AIR QUALITY STUDY

TENTATIVE TRACT MAP 38480 APN's 487-260-002, 487-260-003, 487-260-004, and 487,260-005 37 Single-Family Unit Development Moreno Valley, California

LEAD AGENCY:

CITY OF MORENO VALLEY 14177 FREDERICK STREET MORENO VALLEY, CA 92552

REPORT PREPARED BY:

BLODGETT BAYLOSIS ENVIRONMENTAL PLANNING 2211 S. HACIENDA BOULEVARD, SUITE 107 HACIENDA HEIGHTS, CALIFORNIA 92240

APRIL 1, 2024

MORV 009

THIS PAGE HAS BEEN INTENTIONALLY LEFT BLANK.

TABLE OF CONTENTS

1. INTRODUCTION	5
2. PROJECT SITE LOCATION	5
3. ENVIRONMENTAL SETTING	
4. PROJECT DESCRIPTION	
5. AIR QUALITY ANALYSIS	10
6. GREENHOUSE GAS EMISSIONS ANALYSIS	15
7. SUMMARY AND CONCLUSIONS	20
8. SOURCES	20

Appendix A – Air Quality Worksheets

THIS PAGE HAS BEEN INTENTIONALLY LEFT BLANK.

1. INTRODUCTION

The purpose of this report is to provide an air quality study related to the construction and subsequent occupancy of a 37-unit single-family residential development that is proposed in the City of Moreno Valley The proposed project is a request to construct 37-units within an 8.89-acre site located southwest of the intersection of Fir Avenue and Azelea Street. The proposed residential units would be single-family detached units consisting of six floor plans. The project site is surrounded on all sides by residential development. The proposed project is a permitted use for both the General Plan and Zoning Ordinance. The project is compatible in terms of use and density with the surrounding development. The development densities permitted under both the City's Zoning Ordinance and General Plan. A more detailed description of the proposed project is provided herein in Section 4. This report consists of the following sections:

- *Section 1 Introduction,* provides an overview of the report's format and content.
- *Section 2 Project Site Location,* describes the project location.
- *Section 3 Environmental Setting,* describes the environmental setting in which the proposed project site is located.
- Section 4 Project Description, includes an overview of the proposed project.
- *Section 5 Air Quality Analysis,* evaluates the potential air quality impacts associated with the construction and subsequent occupancy of the proposed project. The analysis considers both the long-term (operational) and short-term (construction-related) air quality impacts.
- *Section 6 Greenhouse Gas (GHG) Emissions Analysis,* discusses the potential GHG emissions impacts associated with the proposed project's construction and subsequent occupancy.
- *Section* 7 *Summary and Conclusions,* includes a summary of the project and analysis and presents the findings of the analysis.

2. PROJECT SITE LOCATION

The proposed project site is located within the corporate boundaries of the City of Moreno Valley in the central portion of the City. The City of Moreno Valley is located approximately 54 miles east of downtown Los Angeles and 80 miles north of San Diego. The City is bounded by unincorporated portions of Riverside County to the north and east; the City of Riverside and unincorporated Riverside County to the west; and the City of Perris to the south. The location of Moreno Valley in a regional context is shown in Exhibit 1. A citywide map is provided in Exhibit 2.

The 8.89-acre project site is located near the southwest corner of Fir Avenue and Azalea Street. No address has been assigned to the property at this time. The assessor's parcel numbers (APNs) applicable to the project site include 487-260-002, 487-260-003, 487-260-004, and 487,260-005. The project is generally located in the southeast corner of Section 4, Township 3 South, Range 3 West, and is depicted on the Sunnymead U.S. Geological Survey's (USGS) 7.5-minute topographic map. The project site is located just south of the intersection of Willowbrook Lane is surrounded by residential development to the north, east, south, and west. The project site's latitude and longitude is 33°93'48.7"N; -117°19'69.7"W. A vicinity map is provided in Exhibit 3.

EXHIBIT 1 REGIONAL MAP Source: Blodgett Baylosis Environmental Planning

EXHIBIT 2 PROJECT SITE IN MORENO VALLEY Source: Blodgett Baylosis Environmental Planning

EXHIBIT 3 PROJECT SITE Source: Blodgett Baylosis Environmental Planning

3. Environmental Setting

The 8.89-acre project site is generally square in shape and is currently vacant though it was previously used for farming. Disturbances to the subject property are substantial and represent cumulative impacts resulting from past agricultural endeavors, grading, refuse deposits, periodic weed abatement, construction, and residential occupation between the 1950s to 2007. The proposed project site is currently vacant with a zoning designation of Residential 5 District (R5). The site and the surrounding uses are summarized in Table 1.

	Land Use	Zoning	
Project Site	Vacant	R5 Residential	Residential 5 District (R5)
North	Single-family Residential	R5 Residential	Residential 5 District (R5)
South	Single-Family Residential	R5 Residential	Residential 5 District (R5)
East	Single-family Residential	R5 Residential	Residential 5 District (R5)
West	Single Family Residential	R5 Residential	Residential 5 District (R5)

Table 1 Surrounding Land Uses and Setting

4. PROJECT DESCRIPTION

The proposed project is a request to construct 37-units within an 8.89-acre site located southwest of the intersection of Fir Avenue and Azelea Street. Key elements of the proposed project are summarized below and on the following page.

- *Proposed Site Plan.* The proposed project would involve the construction and subsequent occupancy of 37 single-family residential units within an 8.89-acre site. The proposed project site is currently vacant with a zoning designation of Residential 5 District (R5).
- *Single-family Units*. The proposed residential units would be single-family detached units consisting of six floor plans. The individual residential lots would range in size from 7,202 square feet to 12,140 square feet. Each unit would be provided an enclosed garage that would provide parking for two vehicles.
- *Access, Circulation, and Parking.* The main driveway entrance will connect to the east side of Holly Lane. An internal roadway will provide a connection to the individual townhome units. Finally, each unit will include garages for enclosed parking. Additional guest parking will be provided.
- *Proposed Floor Plan*. Each unit would consist of one or two levels and would contain either three or four bedrooms, depending on the floor plan (the fourth bedroom may be used as a family room or study). Each unit would also include two full baths and a private yard area. The units would be two level and would range in size from 2,367 square feet to 3,155 square feet in floor area.
- *Access, Circulation, and Parking.* Vehicular access to the proposed development would be provided by two driveway connections with the south side of Fir Avenue. Internal circulation to the individual residential units would be provided by a series of 36-foot-wide internal roadways.

- *Parking*. Each single-family unit would be provided with an enclosed two-car garage. Addition parking would also be available in the driveway apron.
- *Utilities*. Water and sewer lines would be extended to the proposed development.

As indicated previously, the project is a proposal to construct 37 single-family detached residential units. These single-family units would be owner-occupied. In addition, the proposed project is estimated to add 145 new residents assuming an average household size of 3.91 persons per unit. The average household size figure was derived from the most recent Census data.

The proposed project's site plan is illustrated in Exhibit 4.

5. AIR QUALITY ANALYSIS

CRITERIA POLLUTANTS AND THRESHOLDS OF SIGNIFICANCE

The South Coast Air Quality Management District (SCAQMD) has established quantitative thresholds for short-term (construction) emissions and long-term (operational) emissions for the following criteria pollutants:

- *Ozone* (O_3) is a nearly colorless gas that irritates the lungs, damages materials, and vegetation. Ozone is formed by photochemical reaction (when nitrogen dioxide is broken down by sunlight).
- *Carbon monoxide (CO)* is a colorless, odorless toxic gas that interferes with the transfer of oxygen to the brain and is produced by the incomplete combustion of carbon-containing fuels emitted as vehicle exhaust.
- *Nitrogen dioxide (NO₂)* is a yellowish-brown gas, which at high levels can cause breathing difficulties. NO₂ is formed when nitric oxide (a pollutant from internal combustion) combines with oxygen.
- *Sulfur dioxide* (SO₂) is a colorless, pungent gas formed primarily by the combustion of sulfurcontaining fossil fuels. Health effects include acute respiratory symptoms and difficulty in breathing for children.
- *PM*₁₀ and *PM*_{2.5} refers to particulate matter less than ten microns and two and one-half microns in diameter, respectively. Particulates of this size cause a greater health risk than larger-sized particles since fine particles can more easily cause irritation.

Projects in the South Coast Air Basin (SCAB) generating construction-related emissions that exceed any of the following emissions thresholds are considered to be significant under CEQA:

- 75 pounds per day of reactive organic compounds;
- 100 pounds per day of nitrogen dioxide;
- 550 pounds per day of carbon monoxide;
- 150 pounds per day of PM₁₀;
- 55 pounds per day of $PM_{2.5}$; or,
- 150 pounds per day of sulfur oxides.

EXHIBIT 4 PROJECT SITE PLAN

A project would have a significant effect on air quality if any of the following operational emissions thresholds for criteria pollutants are exceeded:

- 55 pounds per day of reactive organic compounds;
- 55 pounds per day of nitrogen dioxide;
- 550 pounds per day of carbon monoxide;
- 150 pounds per day of PM₁₀;
- 55 pounds per day of $PM_{2.5}$; or,
- 150 pounds per day of sulfur oxides.

CONFORMITY WITH THE AIR QUALITY MANAGEMENT PLAN

The project site is located within the South Coast Air Basin (SCAB), which covers a 6,600 square-mile area within Los Angeles, the non-desert portions of Los Angeles County, Riverside County, and San Bernardino County. Measures to improve regional air quality are outlined in the SCAQMD's Air Quality Management Plan (AQMP). The most recent AQMP was jointly prepared with the California Air Resources Board (CARB) and the Southern California Association of Governments (SCAG). The AQMP will help the SCAQMD maintain focus on the air quality impacts of major projects associated with goods movement, land use, energy efficiency, and other key areas of growth. Key elements of the AQMP include enhancements to existing programs to meet the 24-hour $PM_{2.5}$ Federal health standard and a proposed plan of action to reduce ground-level ozone. The primary criteria pollutants that remain non-attainment in the local area include $PM_{2.5}$ and ozone.

Air quality impacts may occur during the construction or operation of a project, and may come from stationary (e.g., industrial processes, generators), mobile (e.g., automobiles, trucks), or off-site area wide (e.g., power plants) sources. The SCAB is subject to the Final 2016 Air Quality Management Plan (AQMP), which was jointly prepared with the California Air Resources Board (CARB) and the Southern California Association of Governments (SCAG). The Air Quality Handbook refers to the following criteria as a means to determine a project's conformity with the AQMP:

- *Consistency Criteria 1* refers to a proposed project's potential for resulting in an increase in the frequency or severity of an existing air quality violation or its potential for contributing to the continuation of an existing air quality violation.
- *Consistency Criteria 2* refers to a proposed project's potential for exceeding the assumptions included in the AQMP or other regional growth projections relevant to the AQMP's implementation.

The proposed project conforms to the City's General Plan. The project's construction and operational emissions are anticipated to be below the thresholds of significance established by the SCAQMD. Therefore, the proposed project will not violate *Consistency Criteria 1*. In terms of *Consistency Criteria 2*, the 37-unit proposed project is within the build-out projections established for the Moreno Valley General Plan. *As a result, no impacts related to the implementation of the AQMP are anticipated*.

SHORT-TERM (CONSTRUCTION EMISSIONS IMPACTS

The City is located in a non-attainment area for ozone and particulates. All construction will be required to adhere to all SCAQMD regulations related to fugitive dust generation and other construction-related

emissions. According to SCAQMD Regulation 403, construction areas must be regularly watered up to three times per day during excavation, grading, and construction as required (depending on temperature, soil moisture, wind, etc.). Watering could reduce fugitive dust by as much as 55 percent. Rule 403 also requires that temporary dust covers be used on any piles of excavated or imported. discontinued during periods of high winds (i.e., greater than 15 mph), so as to prevent excessive amounts of fugitive dust. Finally, the contractors must comply with other SCAQMD regulations governing equipment idling and emissions controls. The aforementioned SCAQMD regulations are standard conditions required for every construction project undertaken in the City as well as in the cities and counties governed by the SCAQMD. The analysis of daily construction and operational emissions was prepared utilizing the California Emissions Estimator Model (CalEEMod V.2022.1.1.22). The proposed project's potential construction emissions are shown in Table 2.

Construction Phase	ROG	NO ₂	СО	SO_2	PM ₁₀	PM _{2.5}
Maximum Daily Emissions	33.8	31.7	31.2	0.05	6.71	3.94
Daily Thresholds	75	100	550	150	150	55
Significant Impact?	No	No	No	No	No	No

Table 2 Estimated Daily Construction Emissions in lbs./day

Source: CalEEMod V.2022.1.1.22. (The worksheet is included herein in Appendix A)

The City is located in a non-attainment area for ozone and particulates. All construction will be required to adhere to all SCAQMD regulations related to fugitive dust generation and other construction-related emissions. According to SCAQMD Regulation 403, construction areas must be regularly watered up to three times per day during excavation, grading, and construction as required (depending on temperature, soil moisture, wind, etc.). Watering could reduce fugitive dust by as much as 55 percent. Rule 403 also requires that temporary dust covers be used on any piles of excavated or imported earth to reduce wind-blown dust. In addition, all clearing, earthmoving, or excavation activities must be discontinued during periods of high winds (i.e., greater than 15 mph), so as to prevent excessive amounts of fugitive dust. Finally, the contractors must comply with other SCAQMD regulations governing equipment idling and emissions controls. The aforementioned SCAQMD regulations are standard conditions required for every construction project undertaken in the City as well as in the cities and counties governed by the SCAQMD. As shown in Table 2, daily construction emissions will not exceed the SCAQMD's significance thresholds.

The long-term operational air quality impacts associated with the proposed project include mobile emissions from vehicular traffic; on-site stationary emissions related to the operation of machinery; and off-site stationary emissions associated with the off-site generation and consumption of energy (natural gas). The analysis of long-term operational impacts summarized in Table 3, also used the CalEEMod computer model developed for the SCAQMD.

Emission Source	ROG	NO ₂	СО	SO ₂	PM10	PM _{2.5}
Total (lbs./day)	13.7	2.24	30.7	0.07	4.67	3.14
Daily Thresholds	55	55	550	150	150	55
Significant Impact?	No	No	No	No	No	No

Table 3 Estimated Operational Emissions in lbs./day

Source: CalEEMod V.2022.1.1.22 (the worksheet is included herein in Appendix A)

As indicated in Table 3, the projected long-term emissions are anticipated to be below the thresholds of significance established by the SCAQMD. The operational emissions take into account the number of trips provided in the traffic report.

As indicated in the air quality analysis (Appendix A), the daily construction emissions will not exceed the SCAQMD's significance thresholds. The long-term operational air quality impacts associated with the proposed project include mobile emissions from vehicular traffic; on-site stationary emissions related to the operation of machinery; and off-site stationary emissions associated with the off-site generation and consumption of energy (natural gas). The projected long-term emissions are anticipated to be below the thresholds of significance established by the SCAQMD (Refer to Appendix A). *As a result, the potential impacts are less than significant.*

SENSITIVE RECEPTORS

Sensitive populations are more susceptible to the effects of air pollution than the general population. Sensitive populations (sensitive receptors) that are in proximity to localized sources of toxics and carbon monoxide (CO) are of particular concern. Land uses considered sensitive receptors include residences, schools, playgrounds, childcare centers, athletic facilities, long-term health care facilities, rehabilitation centers, convalescent centers, and retirement homes. The nearest sensitive receptors are the existing hom e located in the area around the project site.

Most vehicles generate CO as part of the tail-pipe emissions and high concentrations of CO along busy roadways and congested intersections are a concern. The areas surrounding the most congested intersections are often found to contain high levels of CO that exceed applicable standards. Typically, a hot-spot may occur near an intersection that is experiencing severe congestion (a LOS E or LOS F). The SCAQMD stated in its CEQA Handbook that a CO hot-spot would not likely develop at an intersection operating at LOS C or better. Since the Handbook was written, there have been new CO emissions controls added to vehicles and reformulated fuels are now sold in the SCAB. These new automobile emissions controls, along with the reformulated fuels, have resulted in a lowering of both ambient CO concentrations and vehicle emissions. In addition, the total number of vehicle trips that would be generated by the potential new development would not be great enough to result in the creation of a carbon monoxide hotspot. *As a result, the impacts would be less than significant.*

Diesel particulate emissions (DPM) generated by project construction equipment is not expected to create conditions where the probability is greater than 10 in 1 million of contracting cancer. Therefore, the project would not expose sensitive receptors to substantial pollutant concentrations associated with DPM during construction that could result in excess cancer risks, and impacts would be less than significant. An analysis of mobile source diesel particulate matter (DPM) emissions was performed for idling trucks, trucks travelling to the project site, and for the operation of construction equipment due to the presence of sensitive receptors located adjacent to the project site. The 2017 EMFAC emissions factors for LHD2 vehicles, or Light-Heavy-Duty trucks weighing no more than 14,000 pounds, were utilized in order to perform the analysis for construction trucks. Meanwhile, the emission factors for the individual construction equipment were derived from the SCAQMD.

Table 4 depicts the project's mobile source DPM emissions during the grading phase. The number and pieces of equipment that will be used during the grading phase was taken from the CalEEMod worksheets that were prepared for this project. As shown in Table 4, the grading phase will result in negligible emissions.

Equipment	Number of Vehicles	Emissions Factors (grams/hour)	Number of Hours	Emissions
Excavators	2	0.0227	8	0.181 pounds per day
Graders	1	0.0343	8	0.274 pounds per day
Tractors	1	0.016	8	0.128 pounds per day
Loaders	1	0.016	8	0.128 pounds per day
Backhoes	1	0.016	8	0.128 pounds per day
Rubber Tired Dozers	1	0.0559	8	0.447 pounds per day
Scrapers	2	0.0643	8	1.02 pounds per day

Table 4 Diesel Particulate Exhaust (DPM) Source Emissions During Grading

Source: 2017 EMFAC Factors

ODOR IMPACTS

Sensitive receptors near the project site include residential uses located to the north, south, east, and west of the project site. The exposure to odors associated with project construction would be short term and temporary in nature. Project construction would be regulated by CARB's Airborne Toxic Control Measures 13 (California Code of Regulations Chapter 10 Section 2485), which requires that equipment idling time not exceed 5 minutes unless more time is required per engine manufacturers' specifications or for safety reasons. Therefore, project construction would not generate odors adversely affecting a substantial number of people, and impacts would be less than significant.

The SCAQMD has identified those land uses that are typically associated with odor complaints. These uses include activities involving livestock, rendering facilities, food processing plants, chemical plants, composting activities, refineries, landfills, and businesses involved in fiberglass molding. The proposed 37-unit residential development will not result in any odor generating activity. In addition, the future residents must comply with all applicable SCAQMD regulations governing nuisance odors. *As a result, the impacts would be less than significant*.

6. GREENHOUSE GAS EMISSIONS ANALYSIS

GREENHOUSE GAS EMISSIONS

Examples of GHG that are produced both by natural and industrial processes include carbon dioxide (CO_2), methane (CH_4), and nitrous oxide (N_2O). The accumulation of GHG in the atmosphere regulates the earth's temperature. Without these natural GHG, the Earth's surface would be about 61°F cooler. However, emissions from fossil fuel combustion have elevated the concentrations of GHG in the atmosphere to above natural levels. These man-made GHG will have the effect of warming atmospheric temperatures with the attendant impacts of changes in the global climate, increased sea levels, and changes to the worldwide biome. They major GHG that influence global warming are described below.

• *Water Vapor*. Water vapor is the most abundant GHG present in the atmosphere. While water vapor is not considered a pollutant, while it remains in the atmosphere it maintains a climate necessary for life. Changes in the atmospheric concentration of water vapor is directly related to

the warming of the atmosphere rather than a direct result of industrialization. As the temperature of the atmosphere rises, more water is evaporated from ground storage (rivers, oceans, reservoirs, soil). Because the air is warmer, the relative humidity can be higher (in essence, the air is able to "hold" more water when it is warmer), leading to more water vapor in the atmosphere. As a GHG, the higher concentration of water vapor is then able to absorb more thermal indirect energy radiated from the Earth, thus further warming the atmosphere. When water vapor increases in the atmosphere, more of it will eventually also condense into clouds, which are more able to reflect incoming solar radiation. This will allow less energy to reach the Earth's surface thereby affecting surface temperatures.

- *Carbon Dioxide* (*CO*₂). The natural production and absorption of *CO*₂ is achieved through the terrestrial biosphere and the ocean. Man-made sources of *CO*₂ include the burning coal, oil, natural gas, and wood. Since the industrial revolution began in the mid-1700's, these activities have increased the atmospheric concentrations of *CO*₂. Prior to the industrial revolution, concentrations were fairly stable at 280 parts per million (ppm). The International Panel on Climate Change (IPCC Fifth Assessment Report, 2014) Emissions of *CO*₂ from fossil fuel combustion and industrial processes contributed about 78% of the total GHG emissions increase from 1970 to 2010, with a similar percentage contribution for the increase during the period 2000 to 2010.
- *Methane (CH₄).* CH₄ is an extremely effective absorber of radiation, although its atmospheric concentration is less than that of CO₂. Methane's lifetime in the atmosphere is brief (10 to 12 years), compared to some other GHGs (such as CO₂, N₂O, and Chlorofluorocarbons (CFCs). CH₄ has both natural and anthropogenic sources. It is released as part of the biological processes in low oxygen environments, such as in swamplands or in rice production (at the roots of the plants). Over the last 50 years, human activities such as growing rice, raising cattle, using natural gas, and mining coal have added to the atmospheric concentration of methane. Other human-related sources of methane production include fossil-fuel combustion and biomass burning.
- *Nitrous Oxide (N₂O)*. Concentrations of N₂O also began to increase at the beginning of the industrial revolution. In 1998, the global concentration of this GHG was documented at 314 parts per billion (ppb). N₂O is produced by microbial processes in soil and water, including those reactions which occur in fertilizer containing nitrogen. In addition to agricultural sources, some industrial processes (fossil fuel-fired power plants, nylon production, nitric acid production, and vehicle emissions) also contribute to its atmospheric load. It is also commonly used as an aerosol spray propellant.
- *Chlorofluorocarbons (CFC)*. CFCs are gases formed synthetically by replacing all hydrogen atoms in methane or ethane (C₂H₆) with chlorine and/or fluorine atoms. CFCs are nontoxic, nonflammable, insoluble, and chemically unreactive in the troposphere (the level of air at the Earth's surface). CFCs have no natural source but were first synthesized in 1928. It was used for refrigerants, aerosol propellants, and cleaning solvents. Due to the discovery that they are able to destroy stratospheric ozone, a global effort to halt their production was undertaken and in 1989 the European Community agreed to ban CFCs by 2000 and subsequent treaties banned CFCs worldwide by 2010. This effort was extremely successful, and the levels of the major CFCs are now remaining level or declining. However, their long atmospheric lifetimes mean that some of the CFCs will remain in the atmosphere for over 100 years.

- *Hydrofluorocarbons (HFC)*. HFCs are synthetic man-made chemicals that are used as a substitute for CFCs. Out of all the GHGs, they are one of three groups with the highest global warming potential. The HFCs with the largest measured atmospheric abundances are (in order), HFC-23 (CHF₃), HFC-134a (CF₃CH₂F), and HFC-152a (CH₃CHF₂). Prior to 1990, the only significant emissions were HFC-23. HFC-134a use is increasing due to its use as a refrigerant. Concentrations of HFC-23 and HFC-134a in the atmosphere are now about 10 parts per trillion (ppt) each. Concentrations of HFC-152a are about 1 ppt. HFCs are manmade and used for applications such as automobile air conditioners and refrigerants.
- *Perfluorocarbons (PFC).* PFCs have stable molecular structures and do not break down through the chemical processes in the lower atmosphere. High-energy ultraviolet rays about 60 kilometers above Earth's surface are able to destroy the compounds. Because of this, PFCs have very long lifetimes, between 10,000 and 50,000 years. Two common PFCs are tetrafluoromethane (C_4) and hexafluoroethane (C_2F_6). Concentrations of CF_4 in the atmosphere are over 70 ppt. The two main sources of PFCs are primary aluminum production and semiconductor manufacturing.
- *Sulfur Hexafluoride* (*SF*₆). SF₆ is an inorganic, odorless, colorless, nontoxic, nonflammable gas. SF₆ has the highest global warming potential of any gas evaluated; 23,900 times that of CO₂. Concentrations in the 1990s where about 4 ppt. Sulfur hexafluoride is used for insulation in electric power transmission and distribution equipment, in the magnesium industry, in semiconductor manufacturing, and as a tracer gas for leak detection.

GREENHOUSE GAS ESTIMATION

The GHG emissions associated with the project were calculated and compared to the SCAQMD screening threshold. The SCAQMD published its Interim CEQA GHG Significance Thresholds for Stationary Sources, Rules, and Plans in 2008. Consistent with the SCAQMD guidance, the recommended tiered approach for land use development projects in SCAQMD jurisdiction is assessment against the applicable screening levels. The SCAQMD screening threshold of 3,000 MT CO2E was used. This screening level is intended to exempt projects that are too small to have significant impacts from further analysis. Emissions from all construction and operational sources were calculated and compared to the screening threshold. The project's operational GHG emissions were calculated using the CalEEMod V.2022.1.1.22. Table 5 summarizes annual greenhouse gas emissions from build-out of the proposed project. As indicated in Table 3, the CO₂E total for the project is 544 MTCO2E per year.

	GHG Emissions (MTOC2E/year)								
Source	CO ₂	CH₄	N ₂ O	CO ₂ E					
Mobile	360	0.02	0.02	366					
Area	12.1	0.01		12.4					
Energy	141	0.01		141					
Long-Term - Total Emissions	527	0.39	0.02	544					

Source: CalEEMod.V.2022.1.1.22

Once operational, the development is projected to fall below the 3,000 MTCO2E per year threshold established for GHG emissions by the SCAQMD. *Therefore, the potential impacts would be less than significant.*

PROJECT'S CONFORMITY WITH CLIMATE CHANGE POLICIES.

On October 9, 2012, the Moreno Valley City Council approved the Energy Efficiency and Climate Action Strategy and the related Greenhouse Gas Analysis. The Strategy and Analysis documents and identifies potential programs and policies to reduce overall City energy consumption and increase the use of renewable energy. The Strategy also prioritizes implementation of programs, policies, and projects based upon energy efficiency, cost efficiency, and potential resources. The Greenhouse Gas Analysis provides a more scientific approach and recommends a target to reducing community-wide GHG emissions consistent with the State reduction goals in Assembly Bill (AB) 32, the legislation that provides the basis of the State's climate action initiatives. The Energy Efficiency and Climate Action Strategy contain 124 different strategies that would reduce the City's carbon footprint. In addition, the General Plan includes the following:

- *Chapter 5, Transportation Demand Management 5.3.5.* Transportation Demand Management (TDM) strategies reduce dependence on the single occupant vehicle, and increase the ability of the existing transportation system to carry more people. The goal of TDM is to reduce single occupant vehicle trips during peak hours and modify the vehicular demand for travel. A reduction in peak hour trips and a decrease in non-attainment pollutants can be achieved through the implementation of TDM strategies. Examples of the strategies include carpooling, telecommuting, flexible work hours, and electronic commerce that enables people to work and shop from home. The TDM strategy will not be applicable to the proposed project.
- *Policy 6.7.6.* Require building construction to comply with the energy conservation requirements of Title 24 of the California Administrative Code. This policy will be applicable to the proposed project.
- *Policy 7-3*. Maintain a close working relationship with EMWD to ensure that EMWD plans for and is aware of opportunities to use reclaimed water in the City. This policy will be applicable to the proposed project.
- *Policy 7.3.1.* Require water conserving landscape and irrigation systems through development review. Minimize the use of lawn within private developments, and within parkway areas. The use of mulch and native and drought tolerant landscaping shall be encouraged. This policy will be applicable to the proposed project.
 - *Policy 7.3.2.* Encourage the use of reclaimed wastewater, stored rainwater, or other legally acceptable non-potable water supply for irrigation. This policy will be applicable to the proposed project.
 - *Policy 7-4.* Provide guidelines for preferred planting schemes and specific species to encourage aesthetically pleasing landscape statements that minimize water use. This policy will be applicable to the proposed project.
 - *Policy 7.5.1.* Encourage building, site design, and landscaping techniques that provide passive heating and cooling to reduce energy demand. This policy will be applicable to the proposed project.
 - *Policy 7.5.2.* Encourage energy efficient modes of transportation and fixed facilities, including transit, bicycle, equestrian, and pedestrian transportation. Emphasize fuel efficiency in the

acquisition and use of City-owned vehicles. This policy will not be applicable to the proposed project.

- *Policy 7.5.2.* Encourage development within areas of high transit potential and access. This policy will not be directly applicable to the proposed project.
- *Policy 7.5.4.* Encourage efficient energy usage in all city public buildings. This policy will not be directly applicable to the proposed project.
- *Policy 7.5.5.* Encourage the use of solar power and other renewable energy systems. This policy will be applicable to the proposed project.
- *Chapter 7 Issues and Opportunities 7.6.2.* The amount of energy consumed in automobile travel can be reduced if commercial and recreational opportunities are located near residential uses. Commuter travel can be minimized if there is a reasonable balance between jobs and housing within the area. Placing high intensity uses along transit corridors can also reduce automobile travel. Reducing residential street width can affect microclimates and reduce the summer cooling needs of adjacent homes. The orientation of buildings can be arranged to affect the amount of heat gain. Shade trees can also cool microclimates and aid in energy conservation. Building construction options are available to reduce energy consumption. Building construction methods include, but are not limited to, insulation of walls and ceilings, insulated windows and solar water heating systems. Many building energy conservation measures have been incorporated into Title 24 of the California Administrative Code and are required of all residential structures.
- *Policy 7.8.1.* Encourage recycling projects by individuals, non-profit organizations, corporations and local businesses, as well as programs sponsored through government agencies. This policy will not be directly applicable to the proposed project.
- *Policy 7.5.3.* Locate areas planned for commercial, industrial, and multiple family density residential

The proposed project will also be in conformance with California's "Cal-Green" building regulations, the most stringent, environmentally-friendly building code in the United States. Cal-Green is a comprehensive, far-reaching set of regulations which mandate environmentally-advanced building practices and regulations designed to conserve natural resources and reduce greenhouse gas emissions, energy consumption, and water use. The project will incorporate a number of sustainable design features to further reduce its environmental footprint, including but not limited to:

- Reduced water uses for landscape irrigation;
- Accommodate the use of alternative means of transportation;
- Use recycled building materials to the extent feasible;
- Use local sources of building materials to the extent feasible; and,
- Minimize the use of impervious paved surfaces throughout the project.

In order to further ensure the project's conformance with the Moreno Valley General Plan and the Energy Efficiency and Climate Action Strategy, the following standard conditions are required:

- The Applicant must install ENERGY STAR appliances wherever appliances are installed.
- The Applicant shall install ENERGY STAR rated light emitting diodes (LEDs) for parking and security lighting.

The Applicant must install ENERGY STAR rated Compact Florescent Lights (CFLs) in all indoor areas that require continuous lighting. CFLs should not be used in rooms or areas that are subject to frequent on/off cycling, as the lifespan of CFLs diminishes when there are frequently turned off.

- The Applicant must install "cool" (lighter colored) pavement throughout the hardscape areas.
- All landscape planted on-site must be watered by water dispensed through drip irrigation.
- The building contractors shall install bicycle racks consistent with the City's Municipal Code adjacent to each building.
- The building contractors shall install electric vehicle charging stations in the parking areas. Preferential parking spaces for electric vehicles must be provided.

The aforementioned standard conditions shall be applicable to the proposed project. *As a result, the potential impacts are considered to be less than significant.*

7. SUMMARY AND CONCLUSIONS

The purpose of this report is to provide an air quality study related to the construction and subsequent occupancy of a 37-unit single-family residential development that is proposed in the City of Moreno Valley The proposed project is a request to construct 37-units within an 8.89-acre site located southwest of the intersection of Fir Avenue and Azelea Street. The proposed residential units would be single-family detached units consisting of six floor plans. The project site is surrounded on all sides by residential development. Key findings oof thigs report are summarized below:

- Construction emissions will be below the thresholds of significance for the criteria pollutants.
- Adherence to SCAQMD Rule 403 will ensure fugitive dust emissions remain at levels that are less than significant.
- Operational emissions are projected to be below the thresholds of significance for criteria pollutants.
- The analysis of the mobile source diesel particulate matter emissions generated by construction vehicles and equipment will not be significant enough to result in a cancer risk of 10 in 1 million.
- The project's annual greenhouse gas emissions will be below the SCAQMD thresholds of significance for mixed use projects.

8. SOURCES

- Moreno Valley General Plan, adopted July 11, 2006; Chapter 5 Circulation Element; Chapter 6 Safety Element – Section 6.6 – Air Quality
- Final Environmental Impact Report City of Moreno Valley General Plan, certified July 11, 2006; Section; Air Quality; Figure 5.3-1 South Coast Air Basin
- California's 2017 Climate Change Scoping Plan, prepared by the California Air Resources Board, November 2017, https://www.arb.ca.gov/cc/scopingplan/scoping_plan_2017.pdf, accessed April 24, 2019
- California Air Resources Board, Air Emissions Estimator [Computer] Model CalEEMod.V.2022.1.1.22.

APPENDIX

APPENDIX A – AIR QUALITY WORKSHEETS

MORV 009 Detailed Report, 3/29/2024

MORV 009 Detailed Report

Table of Contents

- 1. Basic Project Information
 - 1.1. Basic Project Information
 - 1.2. Land Use Types
 - 1.3. User-Selected Emission Reduction Measures by Emissions Sector

2. Emissions Summary

- 2.1. Construction Emissions Compared Against Thresholds
- 2.2. Construction Emissions by Year, Unmitigated
- 2.3. Construction Emissions by Year, Mitigated
- 2.4. Operations Emissions Compared Against Thresholds
- 2.5. Operations Emissions by Sector, Unmitigated
- 2.6. Operations Emissions by Sector, Mitigated
- 3. Construction Emissions Details
 - 3.1. Demolition (2025) Unmitigated
 - 3.2. Demolition (2025) Mitigated

MORV 009 Detailed Report, 3/29/2024

- 3.3. Site Preparation (2025) Unmitigated
- 3.4. Site Preparation (2025) Mitigated
- 3.5. Grading (2025) Unmitigated
- 3.6. Grading (2025) Mitigated
- 3.7. Building Construction (2025) Unmitigated
- 3.8. Building Construction (2025) Mitigated
- 3.9. Building Construction (2026) Unmitigated
- 3.10. Building Construction (2026) Mitigated
- 3.11. Paving (2026) Unmitigated
- 3.12. Paving (2026) Mitigated
- 3.13. Architectural Coating (2026) Unmitigated
- 3.14. Architectural Coating (2026) Mitigated

4. Operations Emissions Details

- 4.1. Mobile Emissions by Land Use
 - 4.1.1. Unmitigated
- 4.1.2. Mitigated
- 4.2. Energy

2/77

MORV 009 Detailed Report, 3/29/2024

- 4.2.1. Electricity Emissions By Land Use Unmitigated
- 4.2.2. Electricity Emissions By Land Use Mitigated
- 4.2.3. Natural Gas Emissions By Land Use Unmitigated
- 4.2.4. Natural Gas Emissions By Land Use Mitigated
- 4.3. Area Emissions by Source
 - 4.3.1. Unmitigated
 - 4.3.2. Mitigated
- 4.4. Water Emissions by Land Use
 - 4.4.1. Unmitigated
 - 4.4.2. Mitigated
- 4.5. Waste Emissions by Land Use
 - 4.5.1. Unmitigated
 - 4.5.2. Mitigated
- 4.6. Refrigerant Emissions by Land Use
 - 4.6.1. Unmitigated
 - 4.6.2. Mitigated
- 4.7. Offroad Emissions By Equipment Type

MORV 009 Detailed Report, 3/29/2024

- 4.7.1. Unmitigated
- 4.7.2. Mitigated
- 4.8. Stationary Emissions By Equipment Type
- 4.8.1. Unmitigated
- 4.8.2. Mitigated
- 4.9. User Defined Emissions By Equipment Type
 - 4.9.1. Unmitigated
 - 4.9.2. Mitigated
- 4.10. Soil Carbon Accumulation By Vegetation Type
 - 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated
 - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated
 - 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated
 - 4.10.4. Soil Carbon Accumulation By Vegetation Type Mitigated
 - 4.10.5. Above and Belowground Carbon Accumulation by Land Use Type Mitigated
 - 4.10.6. Avoided and Sequestered Emissions by Species Mitigated
- 5. Activity Data
 - 5.1. Construction Schedule

MORV 009 Detailed Report, 3/29/2024

5.2. Off-Road Equipment

- 5.2.1. Unmitigated
- 5.2.2. Mitigated

5.3. Construction Vehicles

- 5.3.1. Unmitigated
- 5.3.2. Mitigated

5.4. Vehicles

- 5.4.1. Construction Vehicle Control Strategies
- 5.5. Architectural Coatings

5.6. Dust Mitigation

- 5.6.1. Construction Earthmoving Activities
- 5.6.2. Construction Earthmoving Control Strategies
- 5.7. Construction Paving
- 5.8. Construction Electricity Consumption and Emissions Factors
- 5.9. Operational Mobile Sources
 - 5.9.1. Unmitigated
 - 5.9.2. Mitigated

5/77

MORV 009 Detailed Report, 3/29/2024

5.10. Operational Area Sources

- 5.10.1. Hearths
 - 5.10.1.1. Unmitigated
 - 5.10.1.2. Mitigated
- 5.10.2. Architectural Coatings
- 5.10.3. Landscape Equipment
- 5.10.4. Landscape Equipment Mitigated
- 5.11. Operational Energy Consumption
 - 5.11.1. Unmitigated
 - 5.11.2. Mitigated
- 5.12. Operational Water and Wastewater Consumption
 - 5.12.1. Unmitigated
 - 5.12.2. Mitigated
- 5.13. Operational Waste Generation
 - 5.13.1. Unmitigated
 - 5.13.2. Mitigated
- 5.14. Operational Refrigeration and Air Conditioning Equipment

6/77

MORV 009 Detailed Report, 3/29/2024

5.14.1. Unmitigated

5.14.2. Mitigated

5.15. Operational Off-Road Equipment

5.15.1. Unmitigated

5.15.2. Mitigated

5.16. Stationary Sources

5.16.1. Emergency Generators and Fire Pumps

5.16.2. Process Boilers

5.17. User Defined

5.18. Vegetation

5.18.1. Land Use Change

5.18.1.1. Unmitigated

5.18.1.2. Mitigated

5.18.1. Biomass Cover Type

5.18.1.1. Unmitigated

5.18.1.2. Mitigated

5.18.2. Sequestration

MORV 009 Detailed Report, 3/29/2024

5.18.2.1. Unmitigated

5.18.2.2. Mitigated

- 6. Climate Risk Detailed Report
 - 6.1. Climate Risk Summary
 - 6.2. Initial Climate Risk Scores
 - 6.3. Adjusted Climate Risk Scores
 - 6.4. Climate Risk Reduction Measures
- 7. Health and Equity Details
 - 7.1. CalEnviroScreen 4.0 Scores
 - 7.2. Healthy Places Index Scores
 - 7.3. Overall Health & Equity Scores
 - 7.4. Health & Equity Measures
 - 7.5. Evaluation Scorecard
 - 7.6. Health & Equity Custom Measures
- 8. User Changes to Default Data

MORV 009 Detailed Report, 3/29/2024

1. Basic Project Information

1.1. Basic Project Information

Data Field	Value
Project Name	MORV 009
Construction Start Date	1/1/2025
Operational Year	2026
Lead Agency	-
Land Use Scale	Project/site
Analysis Level for Defaults	County
Windspeed (m/s)	2.50
Precipitation (days)	24.0
Location	33.93464404069659, -117.19694359362416
County	Riverside-South Coast
City	Moreno Valley
Air District	South Coast AQMD
Air Basin	South Coast
TAZ	5592
EDFZ	11
Electric Utility	Moreno Valley Utility
Gas Utility	Southern California Gas
App Version	2022.1.1.22

1.2. Land Use Types

	Land Use Subtype	Size	Unit	Lot Acreage	Building Area (sq ft)	Landscape Area (sq ft)	Special Landscape Area (sq ft)	Population	Description
--	------------------	------	------	-------------	-----------------------	---------------------------	-----------------------------------	------------	-------------

9/77

MORV 009 Detailed Report, 3/29/2024

Single Family	37.0	Dwelling Unit	8.89	107,530	433,376	 120	_
Housing							

1.3. User-Selected Emission Reduction Measures by Emissions Sector

Sector	#	Measure Title
Construction	C-9	Use Dust Suppressants
Construction	C-10-A	Water Exposed Surfaces

2. Emissions Summary

2.1. Construction Emissions Compared Against Thresholds

Un/Mit.	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)		_	-	-	_			-			_	_		_	_	_	_	_
Unmit.	1.42	1.19	10.6	14.1	0.02	0.43	0.21	0.64	0.40	0.05	0.45		2,706	2,706	0.11	0.04	1.03	2,723
Mit.	1.42	1.19	10.6	14.1	0.02	0.43	0.21	0.64	0.40	0.05	0.45		2,706	2,706	0.11	0.04	1.03	2,723
% Reduced	_	-	-	_	-		-	-	_		-	—	_	_	_	_		_
Daily, Winter (Max)		_	-	_		_	_	-		_	-	_	_	_	-	_		-
Unmit.	4.02	33.8	31.7	31.2	0.05	1.37	19.9	21.3	1.26	10.2	11.4		5,522	5,522	0.23	0.05	0.03	5,543
Mit.	4.02	33.8	31.7	31.2	0.05	1.37	5.34	6.71	1.26	2.68	3.94		5,522	5,522	0.23	0.05	0.03	5,543
% Reduced	_	_			_		73%	68%	-	74%	66%	-	-					_
Average Daily (Max)	_	_	-	-	_	-	-	-	-	-	-	-	-	-	-	-	_	_

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

MORV 009 Detailed Report, 3/29/2024

Unmit.	1.20	1.96	9.07	11.0	0.02	0.38	1.07	1.45	0.35	0.50	0.84	-	2,062	2,062	0.08	0.03	0.30	2,073
Mit.	1.20	1.96	9.07	11.0	0.02	0.38	0.39	0.76	0.35	0.16	0.50	-	2,062	2,062	0.08	0.03	0.30	2,073
% Reduced	_	_	-	-	-	_	64%	47%	-	69%	41%	-	-	-	-	-		-
Annual (Max)	_		-	-	-	_		-	-	-		-	-	-	-	-		_
Unmit.	0.22	0.36	1.66	2.00	< 0.005	0.07	0.20	0.26	0.06	0.09	0.15	10	341	341	0.01	0.01	0.05	343
Mit.	0.22	0.36	1.66	2.00	< 0.005	0.07	0.07	0.14	0.06	0.03	0.09	-	341	341	0.01	0.01	0.05	343
% Reduced	-	—		-		-	64%	47%	-	69%	41%	-	-	-	-	-	-	-

2.2. Construction Emissions by Year, Unmitigated

Criteria Pollutants	(lb/day for dai	, ton/yr for annual	and GHGs	(lb/day for dail	y, MT/yr for annual)
---------------------	-----------------	---------------------	----------	------------------	----------------------

Year	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily - Summer (Max)		-		-	-	-	-	-	-	-	-		-	-	-	-		-
2025	1.42	1.19	10.6	14.1	0.02	0.43	0.21	0.64	0.40	0.05	0.45	-	2,706	2,706	0.11	0.04	1.03	2,723
Daily - Winter (Max)	-			-	-		-	-	-			-	-	_	-		-	_
2025	4.02	3.38	31.7	31.2	0.05	1.37	19.9	21.3	1.26	10.2	11.4		5,522	5,522	0.23	0.05	0.03	5,543
2026	1.34	33.8	10.0	13.7	0.02	0.38	0.21	0.59	0.35	0.05	0.40	-	2,685	2,685	0.10	0.04	0.02	2,701
Average Daily	-				-	_	-		_			-	-	_			-	-
2025	1.20	1.00	9.07	11.0	0.02	0.38	1.07	1.45	0.35	0.50	0.84	-	2,062	2,062	0.08	0.03	0.30	2,073
2026	0.14	1.96	1.05	1.50	< 0.005	0.04	0.02	0.07	0.04	0.01	0.04	-	266	266	0.01	< 0.005	0.04	267
Annual	-	-	-	-	-	-	-	-	-	_	-	_	-	-	-	-	-	-
2025	0.22	0.18	1.66	2.00	< 0.005	0.07	0.20	0.26	0.06	0.09	0.15	_	341	341	0.01	0.01	0.05	343
2026	0.03	0.36	0.19	0.27	< 0.005	0.01	< 0.005	0.01	0.01	< 0.005	0.01	_	44.0	44.0	< 0.005	< 0.005	0.01	44.2

2.3. Construction Emissions by Year, Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Year	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily - Summer (Max)	_	-	_	-			-	_	-	-	-	-	-	_	-	_	-	-
2025	1.42	1.19	10.6	14.1	0.02	0.43	0.21	0.64	0.40	0.05	0.45		2,706	2,706	0.11	0.04	1.03	2,723
Daily - Winter (Max)	-	_		-	-	_	_	-	-		-	_	-		-	-	-	_
2025	4.02	3.38	31.7	31.2	0.05	1.37	5.34	6.71	1.26	2.68	3.94		5,522	5,522	0.23	0.05	0.03	5,543
2026	1.34	33.8	10.0	13.7	0.02	0.38	0.21	0.59	0.35	0.05	0.40	-	2,685	2,685	0.10	0.04	0.02	2,701
Average Daily	-	_	<u></u>	-	-	-	<u></u>		_		-	_	-		_		-	-
2025	1.20	1.00	9.07	11.0	0.02	0.38	0.39	0.76	0.35	0.16	0.50	-	2,062	2,062	0.08	0.03	0.30	2,073
2026	0.14	1.96	1.05	1.50	< 0.005	0.04	0.02	0.07	0.04	0.01	0.04	-	266	266	0.01	< 0.005	0.04	267
Annual	-	-		-	-	-		-	-		-	-	-		-		-	_
2025	0.22	0.18	1.66	2.00	< 0.005	0.07	0.07	0.14	0.06	0.03	0.09	-	341	341	0.01	0.01	0.05	343
2026	0.03	0.36	0.19	0.27	< 0.005	0.01	< 0.005	0.01	0.01	< 0.005	0.01	-	44.0	44.0	< 0.005	< 0.005	0.01	44.2

2.4. Operations Emissions Compared Against Thresholds

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Un/Mit.	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	-		_	_	—		_	_	_	_		_	_		_
Unmit.	12.4	13.7	2.18	30.7	0.07	2.69	1.98	4.67	2.64	0.50	3.14	368	3,929	4,297	3.34	0.13	8.84	4,429
Daily, Winter (Max)	_			-	-	_		_		s	-	_	_	_	-	-		_

MORV 009 Detailed Report, 3/29/2024

Unmit.	12.1	13.4	2.24	27.2	0.07	2.69	1.98	4.66	2.64	0.50	3.14	368	3,783	4,150	3.34	0.14	0.98	4,276
Average Daily (Max)	_	-	-	-	-	_	_	-	-	_	-	-	-	_	-	-		_
Unmit.	2.24	4.52	1.53	11.2	0.03	0.23	1.90	2.13	0.22	0.48	0.70	45.0	3,140	3,185	2.38	0.12	4.18	3,286
Annual (Max)	-	_		-	_	-	-	-	-	-	-	_	-	-	-	-	_	_
Unmit.	0.41	0.83	0.28	2.05	< 0.005	0.04	0.35	0.39	0.04	0.09	0.13	7.44	520	527	0.39	0.02	0.69	544
Exceeds (Annual)	_	_		1		-		() <u></u>	-	-	-		-	-	-	-		-
Threshol d	_	_		-		0.00		-									-	_
Unmit.	-	-	-	-	-	Yes		-	-	-		-	-	-	-	-	-	-

2.5. Operations Emissions by Sector, Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Sector	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	2	-		-		-		-	-	_		-	2	-		10	-	-
Mobile	1.46	1.36	1.06	9.62	0.02	0.02	1.98	2.00	0.02	0.50	0.52		2,342	2,342	0.10	0.11	8.07	2,385
Area	10.9	12.3	0.79	20.9	0.05	2.64		2.64	2.59		2.59	347	668	1,014	1.03	0.01	-	1,044
Energy	0.04	0.02	0.33	0.14	< 0.005	0.03	-	0.03	0.03	-	0.03	-	851	851	0.07	< 0.005	-	854
Water	-				-	-		-	-	_	-	2.88	68.1	70.9	0.30	0.01	-	80.7
Waste	-	_		-	-	_	-	-	-	_		18.3	0.00	18.3	1.83	0.00	-	64.1
Refrig.	—	-	-	-	-			-	-	-		-	-				0.77	0.77
Total	12.4	13.7	2.18	30.7	0.07	2.69	1.98	4.67	2.64	0.50	3.14	368	3,929	4,297	3.34	0.13	8.84	4,429
Daily, Winter (Max)	_	_	-	-	_	_	-	_	-	2	-	-	_		_	_	-	_

MORV 009 Detailed Report, 3/29/2024

Mobile	1.37	1.27	1.14	8.25	0.02	0.02	1.98	2.00	0.02	0.50	0.52	-	2,201	2,201	0.11	0.11	0.21	2,238
Area	10.7	12.2	0.77	18.8	0.05	2.64	-	2.64	2.59	-	2.59	347	662	1,009	1.03	0.01	-	1,038
Energy	0.04	0.02	0.33	0.14	< 0.005	0.03		0.03	0.03	-	0.03	-	851	851	0.07	< 0.005	-	854
Water	-	_	-	-	_	-		-	-	-	-	2.88	68.1	70.9	0.30	0.01	_	80.7
Waste	_	-		-		-		-	_		-	18.3	0.00	18.3	1.83	0.00		64.1
Refrig.	_	-		-	-	-	-	-	-	-	-	-	-	-		-	0.77	0.77
Total	12.1	13.4	2.24	27.2	0.07	2.69	1.98	4.66	2.64	0.50	3.14	368	3,783	4,150	3.34	0.14	0.98	4,276
Average Daily	-	-		-	-	-	-	-	-	-	-	-	-	_	-	-	-	-
Mobile	1.33	1.23	1.13	8.35	0.02	0.02	1.90	1.92	0.02	0.48	0.50	-	2,172	2,172	0.11	0.11	3.41	2,211
Area	0.87	3.27	0.07	2.73	< 0.005	0.18		0.18	0.18	-	0.18	23.7	49.2	72.9	0.07	< 0.005	-	75.0
Energy	0.04	0.02	0.33	0.14	< 0.005	0.03	-	0.03	0.03	-	0.03	-	851	851	0.07	< 0.005	-	854
Water	-	_		—	_	_	-	—	-		-	2.88	68.1	70.9	0.30	0.01	-	80.7
Waste	-	-		-	_	-		-	-	-	-	18.3	0.00	18.3	1.83	0.00	-	64.1
Refrig.	-	_		-	_	_											0.77	0.77
Total	2.24	4.52	1.53	11.2	0.03	0.23	1.90	2.13	0.22	0.48	0.70	45.0	3,140	3,185	2.38	0.12	4.18	3,286
Annual	-	_		-	—	_	<u></u>	-	-	s <u>-</u> 1	-		-	_			-	_
Mobile	0.24	0.22	0.21	1.52	< 0.005	< 0.005	0.35	0.35	< 0.005	0.09	0.09	-	360	360	0.02	0.02	0.56	366
Area	0.16	0.60	0.01	0.50	< 0.005	0.03	-	0.03	0.03		0.03	3.93	8.15	12.1	0.01	< 0.005	-	12.4
Energy	0.01	< 0.005	0.06	0.03	< 0.005	< 0.005	-	< 0.005	< 0.005	-	< 0.005	-	141	141	0.01	< 0.005	-	141
Water	-	_		—	_	_		—	-	-	-	0.48	11.3	11.7	0.05	< 0.005	-	13.4
Waste	-	-	-		_	-		-	-	-		3.04	0.00	3.04	0.30	0.00	-	10.6
Refrig.	-	_			_	_		1							-		0.13	0.13
Total	0.41	0.83	0.28	2.05	< 0.005	0.04	0.35	0.39	0.04	0.09	0.13	7.44	520	527	0.39	0.02	0.69	544

2.6. Operations Emissions by Sector, Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

14/77

MORV 009 Detailed Report, 3/29/2024

Sector	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	-	-		-	-			-	-	-	_		-	-		-	_	-
Mobile	1.46	1.36	1.06	9.62	0.02	0.02	1.98	2.00	0.02	0.50	0.52	-	2,342	2,342	0.10	0.11	8.07	2,385
Area	10.9	12.3	0.79	20.9	0.05	2.64	-	2.64	2.59		2.59	347	668	1,014	1.03	0.01	-	1,044
Energy	0.04	0.02	0.33	0.14	< 0.005	0.03	-	0.03	0.03	3 16	0.03	-	851	851	0.07	< 0.005	-	854
Water	-			-	_			-	-	s 	-	2.88	68.1	70.9	0.30	0.01	-	80.7
Waste	-	_		-		-	-	-			-	18.3	0.00	18.3	1.83	0.00	_	64.1
Refrig.					_					1. <u></u> 1.1		3000334	-				0.77	0.77
Total	12.4	13.7	2.18	30.7	0.07	2.69	1.98	4.67	2.64	0.50	3.14	368	3,929	4,297	3.34	0.13	8.84	4,429
Daily, Winter (Max)	-			-	-	_	-	-	-				-			-	_	-
Mobile	1.37	1.27	1.14	8.25	0.02	0.02	1.98	2.00	0.02	0.50	0.52	-	2,201	2,201	0.11	0.11	0.21	2,238
Area	10.7	12.2	0.77	18.8	0.05	2.64		2.64	2.59	-	2.59	347	662	1,009	1.03	0.01	-	1,038
Energy	0.04	0.02	0.33	0.14	< 0.005	0.03	-	0.03	0.03		0.03	-	851	851	0.07	< 0.005	-	854
Water	-		_	-			-	_	_	_	-	2.88	68.1	70.9	0.30	0.01	-	80.7
Waste	-	-		-	_			-	-	s -s		18.3	0.00	18.3	1.83	0.00	-	64.1
Refrig.	-			-	_			_	-	. <u></u> 3	-	-	-	-			0.77	0.77
Total	12.1	13.4	2.24	27.2	0.07	2.69	1.98	4.66	2.64	0.50	3.14	368	3,783	4,150	3.34	0.14	0.98	4,276
Average Daily	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-
Mobile	1.33	1.23	1.13	8.35	0.02	0.02	1.90	1.92	0.02	0.48	0.50	-	2,172	2,172	0.11	0.11	3.41	2,211
Area	0.87	3.27	0.07	2.73	< 0.005	0.18		0.18	0.18	-	0.18	23.7	49.2	72.9	0.07	< 0.005	-	75.0
Energy	0.04	0.02	0.33	0.14	< 0.005	0.03		0.03	0.03	-	0.03	-	851	851	0.07	< 0.005	-	854
Water	_	-		-	-			_	-	s		2.88	68.1	70.9	0.30	0.01	_	80.7
Waste	-	-		-	_			-	-	3		18.3	0.00	18.3	1.83	0.00	-	64.1
Refrig.	_			-	_		-		-			_	-	-			0.77	0.77
MORV 009 Detailed Report, 3/29/2024

Total	2.24	4.52	1.53	11.2	0.03	0.23	1.90	2.13	0.22	0.48	0.70	45.0	3,140	3,185	2.38	0.12	4.18	3,286
Annual	-	_	-	-	-	-	-	_		-	-		-		-	-	-	-
Mobile	0.24	0.22	0.21	1.52	< 0.005	< 0.005	0.35	0.35	< 0.005	0.09	0.09	-	360	360	0.02	0.02	0.56	366
Area	0.16	0.60	0.01	0.50	< 0.005	0.03		0.03	0.03	-	0.03	3.93	8.15	12.1	0.01	< 0.005	-	12.4
Energy	0.01	< 0.005	0.06	0.03	< 0.005	< 0.005	-	< 0.005	< 0.005		< 0.005		141	141	0.01	< 0.005	-	141
Water	-	—	-	-		-	-			-		0.48	11.3	11.7	0.05	< 0.005	-	13.4
Waste	-	-	<u></u> -		-	_	-	-	-	_	-	3.04	0.00	3.04	0.30	0.00	-	10.6
Refrig.	-	-		-	-	-		-	-	-			-	-	-	-	0.13	0.13
Total	0.41	0.83	0.28	2.05	< 0.005	0.04	0.35	0.39	0.04	0.09	0.13	7.44	520	527	0.39	0.02	0.69	544

3. Construction Emissions Details

3.1. Demolition (2025) - Unmitigated

Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Onsite	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_
Daily, Summer (Max)		_	-	-	-	-	-	-	-	_	-	-	-	_	-	-	_	_
Daily, Winter (Max)		_	-	-	_	_	-	-	-	-	-	-	-	_	-	-		_
Off-Road Equipmen	2.86 t	2.40	22.2	19.9	0.03	0.92	-	0.92	0.84	-	0.84	-	3,425	3,425	0.14	0.03	-	3,437
Demolitio n	_	_	-	-	-	-	0.00	0.00	-	0.00	0.00		-	-	-	-	-	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	-	-			-	-		-	_				-	-			-	-

Off-Road Equipmen	0.16 t	0.13	1.22	1.09	< 0.005	0.05	_	0.05	0.05	-	0.05	-	188	188	0.01	< 0.005	-	188
Demolitio n	—	_		-	-	_	0.00	0.00	-	0.00	0.00	-	-			_	-	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-
Off-Road Equipmen	0.03 t	0.02	0.22	0.20	< 0.005	0.01	-	0.01	0.01	;	0.01	-	31.1	31.1	< 0.005	< 0.005	-	31.2
Demolitio n	_	-			-	-	0.00	0.00	-	0.00	0.00	17	-	_	-		-	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	-		-	-	_		-	-		-	-	-		-	-	-	-
Daily, Summer (Max)	-	-		-	-	-	-	-	-	—	-	-	-	-	-	-	-	_
Daily, Winter (Max)	-	-	-	-	-	-	-	-	-	—		-	-	-			_	-
Worker	0.07	0.06	0.07	0.88	0.00	0.00	0.20	0.20	0.00	0.05	0.05		194	194	0.01	0.01	0.02	197
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_		-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-
Worker	< 0.005	< 0.005	< 0.005	0.05	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	-	10.8	10.8	< 0.005	< 0.005	0.02	10.9
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	-	-	_	-	-	_	_		-	-	_		-		_	-
Worker	< 0.005	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	1.79	1.79	< 0.005	< 0.005	< 0.005	1.81
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling																		

3.2. Demolition (2025) - Mitigated

Location	TOG	ROG	NOx	co	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Onsite	_	_	-	-	_	_	-	-	-	_	-	-	-	-	-	-	-	_
Daily, Summer (Max)	_	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	_
Daily, Winter (Max)	_		177-183	-	_	_			-		-		-		-	_	-	_
Off-Road Equipmen	2.86 t	2.40	22.2	19.9	0.03	0.92	-	0.92	0.84		0.84	-	3,425	3,425	0.14	0.03	-	3,437
Demolitio n	_	_		-	_		0.00	0.00	-	0.00	0.00	_	-		-		-	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	-		-	-	-	-	-	-	_	-	-	-	_	-		-	-
Off-Road Equipmen	0.16 t	0.13	1.22	1.09	< 0.005	0.05	-	0.05	0.05		0.05	-	188	188	0.01	< 0.005	-	188
Demolitio n	_	-		-	-		0.00	0.00	-	0.00	0.00	-	-	-	-	-	-	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_			-	_		-		_		-		-	-		-	-	_
Off-Road Equipmen	0.03 t	0.02	0.22	0.20	< 0.005	0.01	-	0.01	0.01	-	0.01	-	31.1	31.1	< 0.005	< 0.005	-	31.2
Demolitio n		_	-	-	_	_	0.00	0.00	-	0.00	0.00	-	-		-	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_		_	_		-	_	_	-	-		-	_	_		_	

MORV 009 Detailed Report, 3/29/2024

Daily, Summer (Max)		_	_	-	_	_	_	-			-	-	-	_		-	_	
Daily, Winter (Max)	_	_	_	-	-	-	-	-	-		-	-	-	-	-	-	-	_
Worker	0.07	0.06	0.07	0.88	0.00	0.00	0.20	0.20	0.00	0.05	0.05	-	194	194	0.01	0.01	0.02	197
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	-			-	-	-	0	-	2 	-	10000	-	-			-	-
Worker	< 0.005	< 0.005	< 0.005	0.05	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005		10.8	10.8	< 0.005	< 0.005	0.02	10.9
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	-	-		-	-	_	-	-	-	_	-	-	-	-	-	-	-	-
Worker	< 0.005	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	-	1.79	1.79	< 0.005	< 0.005	< 0.005	1.81
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00

3.3. Site Preparation (2025) - Unmitigated

Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	-	_	-	-	-	-	-	_			-	_		-	-	_	_
Daily, Summer (Max)	_	_	-	—	-	-		—		_		-	_	_	-	_		_
Daily, Winter (Max)		_	-	_	-	-	_	_		_	_	-		_	-	_		_
Off-Road Equipmen	3.94 t	3.31	31.6	30.2	0.05	1.37		1.37	1.26	_	1.26	-	5,295	5,295	0.21	0.04		5,314

Onsite funct. 0.00<	Dust From Material Movemen	t	_	_	_	_		19.7	19.7	_	10.1	10.1		_	_	_		_	
Average Daily	Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Off-Road 0.11 0.09 0.87 0.83 < 0.005 0.04 $-$ 0.04 0.03 $-$ 0.03 $-$ 145 145 0.14 Dust From Material Movemert $ 0.54$ 0.54 $ 0.28$ 0.28 $ 0.00$ 0.00	Average Daily	-	-	-	-	-	-	-	-	-	3 7	-	-	-	-	-	-	-	_
Dust From Material Novement	Off-Road Equipmen	0.11 t	0.09	0.87	0.83	< 0.005	0.04	-	0.04	0.03	-	0.03	-	145	145	0.01	< 0.005	-	146
Onsite funck 0.00 </td <td>Dust From Material Movemen</td> <td>;</td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td>_</td> <td>0.54</td> <td>0.54</td> <td>-</td> <td>0.28</td> <td>0.28</td> <td>_</td> <td>-</td> <td>-</td> <td>-</td> <td>_</td> <td>-</td> <td>_</td>	Dust From Material Movemen	;	-		-	-	_	0.54	0.54	-	0.28	0.28	_	-	-	-	_	-	_
Annual	Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Off-Road 0.02 0.16 0.15 < 0.005 0.01 - 0.01 - 24.0 24.0 < 0.01 Dust	Annual	_	-	-	-	_	-	-	-	_	_	-	-	_	-	-	-	_	_
Dust From Material Movement 0.10 0.10 0.05 0.05	Off-Road Equipmen	0.02 t	0.02	0.16	0.15	< 0.005	0.01		0.01	0.01	-	0.01		24.0	24.0	< 0.005	< 0.005	-	24.1
Onsite truck 0.00 <td>Dust From Material Movemen</td> <td>1</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td>0.10</td> <td>0.10</td> <td>-</td> <td>0.05</td> <td>0.05</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>_</td>	Dust From Material Movemen	1	-	-	-	-		0.10	0.10	-	0.05	0.05	-	-	-	-	-	-	_
Offsite	Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Summer (Max) -	Offsite	_	-		-	-	_		-	-	. <u> </u>	-		-	-	-	-	_	_
Daily, — — — — — — — — — — — — — — — — — — —	Daily, Summer (Max)		-	-	-	-	-	-	-	-	-	-	-	-	—	-	-	-	-
(Max)	Daily, Winter (Max)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Worker 0.08 0.07 0.08 1.02 0.00 0.00 0.23 0.23 0.00 0.05 0.05 - 227 227 0.0	Worker	0.08	0.07	0.08	1.02	0.00	0.00	0.23	0.23	0.00	0.05	0.05	-	227	227	0.01	0.01	0.02	230
Vendor 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Hauling 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00

MORV 009 Detailed Report, 3/29/2024

Average Daily	-	-		-	-	_	-	-	-	-	-	-	-	_	-	-	-	-
Worker	< 0.005	< 0.005	< 0.005	0.03	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	-	6.29	6.29	< 0.005	< 0.005	0.01	6.38
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	-	—		-	_	—		-	-	—		-	-	-			-	-
Worker	< 0.005	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005		1.04	1.04	< 0.005	< 0.005	< 0.005	1.06
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00

3.4. Site Preparation (2025) - Mitigated

TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
_	-	-	-		-		-		—	-	-	-	—		-		-
_	_	-	-	-		-	-	-	<u> </u>	-	-	-	_	-	-	-	_
_	_	-	-	_		-	-	-		-	-	-	_	-	-	-	_
3.94 t	3.31	31.6	30.2	0.05	1.37		1.37	1.26		1.26	_	5,295	5,295	0.21	0.04	-	5,314
 r	_	_	-	-	_	5.11	5.11	-	2.63	2.63	-	_	_	_	_	_	_
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
-	-	-	-	-	-	-	-	-	-	-	_	-	_	-	-	-	-
0.11 t	0.09	0.87	0.83	< 0.005	0.04	-	0.04	0.03	-	0.03	-	145	145	0.01	< 0.005	-	146
	TOG 	TOG ROG 3.94 3.31 0.00 0.00 0.11 0.09	TOG ROG NOX 3.94 3.31 31.6 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.09 0.87	TOG ROG NOx CO 3.94 3.31 31.6 30.2 0.00 0.00 0.00 0.00 0.00 0.01 0.09 0.87 0.83	TOG ROG NOX CO SO2 3.94 3.31 31.6 30.2 0.05 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.09 0.87 0.83 <0.005	TOG ROG NOX CO SO2 PM10E 3.94 3.31 31.6 30.2 0.05 1.37	TOGROGNOxCOSO2PM10EPM10D $ 3.94$ 3.31 31.6 30.2 0.05 1.37 $ 0.00$ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 $ 0.11$ 0.09 0.87 0.83 <0.005 0.04 $-$	TOGROGNOXCOSO2PM10EPM10DPM10T \neg 3.94 3.31 31.6 30.2 0.05 1.37 \neg \neg 1.37 \neg 0.00 0.00 0.05 0.05 1.37 \neg \neg \uparrow 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 \neg \neg 0.11 0.09 0.87 0.83 <0.005 0.04 \neg 0.04	TOG ROG NOX CO SO2 PM10E PM10D PM10T PM2.5E -	TOG ROG NOX CO SO2 PM10E PM10D PM10T PM2.5E PM2.5D	TOG ROG NOx CO SO2 PM10E PM10D PM10T PM2.5E PM2.5D PM2.5T <t< td=""><td>TOG ROG NOX CO SO2 PM10E PM10D PM10T PM2.5E PM2.5D PM2.5T BCO2 </td><td>TOG ROG NOx CO SO2 PM10E PM10T PM2.5E PM2.5D PM2.5T BCO2 NBCO2 </td><td>TOG ROG NOX CO SO2 PM10E PM10T PM2.5E PM2.5D PM2.5T BCO2 NBCO2 CQT <</td><td>TOG NOX CO SO2 PM10E PM10T PM2.5E PM2.5D <t< td=""><td>TOG NOX CO SO2 PM100 PM107 PM2.50 <t< td=""><td>TOG NOX CO SO2 PM10E PM10T PM2.5T PM2.5T BCO2 NBCO2 CQT CH4 N2O R </td></t<></td></t<></td></t<>	TOG ROG NOX CO SO2 PM10E PM10D PM10T PM2.5E PM2.5D PM2.5T BCO2	TOG ROG NOx CO SO2 PM10E PM10T PM2.5E PM2.5D PM2.5T BCO2 NBCO2	TOG ROG NOX CO SO2 PM10E PM10T PM2.5E PM2.5D PM2.5T BCO2 NBCO2 CQT <	TOG NOX CO SO2 PM10E PM10T PM2.5E PM2.5D PM2.5D <t< td=""><td>TOG NOX CO SO2 PM100 PM107 PM2.50 <t< td=""><td>TOG NOX CO SO2 PM10E PM10T PM2.5T PM2.5T BCO2 NBCO2 CQT CH4 N2O R </td></t<></td></t<>	TOG NOX CO SO2 PM100 PM107 PM2.50 PM2.50 <t< td=""><td>TOG NOX CO SO2 PM10E PM10T PM2.5T PM2.5T BCO2 NBCO2 CQT CH4 N2O R </td></t<>	TOG NOX CO SO2 PM10E PM10T PM2.5T PM2.5T BCO2 NBCO2 CQT CH4 N2O R

Dust From Material Movemen		_		_			0.14	0.14	-	0.07	0.07				_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_		_	_	_	_	_	_	-		_			_	_	_
Off-Road Equipmen	0.02 nt	0.02	0.16	0.15	< 0.005	0.01	-	0.01	0.01	-	0.01	-	24.0	24.0	< 0.005	< 0.005	-	24.1
Dust From Material Movemen		_	-	-	-		0.03	0.03	-	0.01	0.01		-	-	-	-	-	-
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_		-	_	_	-	-	_	_		-	-		-	_	_	_
Daily, Summer (Max)	_	-	-	-	-	-	-	1	-	-	-	-	-	-	-	(1	-	-
Daily, Winter (Max)	_	-	-	-	-	-		-	-	-	-	1	-	-	-	-	_	
Worker	0.08	0.07	0.08	1.02	0.00	0.00	0.23	0.23	0.00	0.05	0.05		227	227	0.01	0.01	0.02	230
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	-	_	-	-	-	_	-	-	-	5 <u> </u>	-	- <u></u>	-		-	-	-	_
Worker	< 0.005	< 0.005	< 0.005	0.03	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	-	6.29	6.29	< 0.005	< 0.005	0.01	6.38
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_		-	_	_	-	-	_			-	_	-	-	-	-	_
Worker	< 0.005	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005		1.04	1.04	< 0.005	< 0.005	< 0.005	1.06
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
		-	-						22/7	7						-	-	-

MORV 009 Detailed Report, 3/29/2024

Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	 0.00	0.00	0.00	0.00	0.00	0.00

3.5. Grading (2025) - Unmitigated

Location	TOG	ROG	NOx	co	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	-	_	-	-	-	<u> </u>		-	-	_	_	_	-	_		-	-	_
Daily, Summer (Max)	-	_	-	-	-	-		-	-	-	-	-	-	-	-	-	-	_
Daily, Winter (Max)	_	_	-	-	-	-	_	-	-	-	-	-	-	-		-	_	_
Off-Road Equipmen	2.07 t	1.74	16.3	17.9	0.03	0.72	-	0.72	0.66		0.66	-	2,959	2,959	0.12	0.02	-	2,970
Dust From Material Movemen	 1	_	-	-	-		7.08	7.08	-	3.42	3.42	-	-	_		-		2
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_
Off-Road Equipmen	0.11 t	0.10	0.89	0.98	< 0.005	0.04	-	0.04	0.04		0.04	-	162	162	0.01	< 0.005	-	163
Dust From Material Movemen		_	-	-	-		0.39	0.39	-	0.19	0.19	-	-	_		-		_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_			-	_			-	_	8			-	s 2		_	_	
Off-Road Equipmen	0.02 t	0.02	0.16	0.18	< 0.005	0.01	-	0.01	0.01	-	0.01	-	26.8	26.8	< 0.005	< 0.005	_	26.9

MORV 009 Detailed Report, 3/29/2024

Dust From Material Movemen		_		_			0.07	0.07	_	0.03	0.03	_	_	_		_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Offsite	-	—		-	-	_		-	-	—		_	-	_		_		_
Daily, Summer (Max)		_	-	-	-	_	_	-	-	-	_	-	-	_	_	-	-	_
Daily, Winter (Max)		_	-	-	-	-	-	-	-	-	_	-	-	_	_	-	-	_
Worker	0.07	0.06	0.07	0.88	0.00	0.00	0.20	0.20	0.00	0.05	0.05	-	194	194	0.01	0.01	0.02	197
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Average Daily		_		-	_	_		-	-		-	_	-		_		-	_
Worker	< 0.005	< 0.005	< 0.005	0.05	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	-	10.8	10.8	< 0.005	< 0.005	0.02	10.9
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	-		-	—	-		-	-				-			-	-	-
Worker	< 0.005	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	-	1.79	1.79	< 0.005	< 0.005	< 0.005	1.81
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00

3.6. Grading (2025) - Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	-	_	_	-	_	_	-	-	_	_	-		-	_	-	-	_	_

24/77

MORV 009 Detailed Report, 3/29/2024

Daily, Summer (Max)	-	-	-	-	_	-	_	-	-	_	-	-	-		-	-	-	_
Daily, Winter (Max)	-	-	_	-	-	-	_	-	-		-	-	-	_	-	-	-	_
Worker	0.07	0.06	0.07	0.88	0.00	0.00	0.20	0.20	0.00	0.05	0.05	-	194	194	0.01	0.01	0.02	197
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	-	-			-	-	-	-	-	-	-	11	-		-			-
Worker	< 0.005	< 0.005	< 0.005	0.05	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	10.8	10.8	< 0.005	< 0.005	0.02	10.9
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	-	_		-	-	_	-	-	-	-		-	-	_		-	-	_
Worker	< 0.005	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	-	1.79	1.79	< 0.005	< 0.005	< 0.005	1.81
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00

3.7. Building Construction (2025) - Unmitigated

Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	-		-		-		-	—	-		-	_	_		-	-	—
Daily, Summer (Max)	_	_	_	-	-	_	_	-	_	_	-	-		_	_	_		_
Off-Road Equipmen	1.35 t	1.13	10.4	13.0	0.02	0.43	-	0.43	0.40	-	0.40	-	2,398	2,398	0.10	0.02		2,406
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00

Daily, Summer (Max)		-	-	-	-	_		-	-	_	-	-	-	_		-	-	-
Daily, Winter (Max)	_	-	-	-	-	_		-	-		-	-	-	_	-	-	-	_
Off-Road Equipmen	2.07 t	1.74	16.3	17.9	0.03	0.72		0.72	0.66	_	0.66		2,959	2,959	0.12	0.02	-	2,970
Dust From Material Movemen			_	_	-	_	1.84	1.84	-	0.89	0.89	-	-		-	-	-	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	-		-	-	-	-	-	-		-	-	-	_	-	-	-	-
Off-Road Equipmen	0.11 t	0.10	0.89	0.98	< 0.005	0.04	-	0.04	0.04	—	0.04	-	162	162	0.01	< 0.005	-	163
Dust From Material Movemen	-	_	_	-	-	_	0.10	0.10	-	0.05	0.05	-	-	-	-	-	-	-
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_		-	_	_	-		-	-	-	-		-			-	-	-
Off-Road Equipmen	0.02 t	0.02	0.16	0.18	< 0.005	0.01	-	0.01	0.01	-	0.01	-	26.8	26.8	< 0.005	< 0.005	-	26.9
Dust From Material Movemen			_	-	-		0.02	0.02		0.01	0.01	-	-	_	-	-	-	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	-	-	_	_	_		_	_	_	_		_			_	_	_

Daily, Winter (Max)				-	—	_	-	-	-	_	-	-	_		_	_	_	
Off-Road Equipmen	1.35 t	1.13	10.4	13.0	0.02	0.43		0.43	0.40		0.40	-	2,398	2,398	0.10	0.02	—	2,406
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily		-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
Off-Road Equipmen	0.77 t	0.64	5.97	7.45	0.01	0.25	-	0.25	0.23	-	0.23	-	1,370	1,370	0.06	0.01	-	1,375
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-
Off-Road Equipmen	0.14 t	0.12	1.09	1.36	< 0.005	0.05		0.05	0.04		0.04	-	227	227	0.01	< 0.005	-	228
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	-	-	_	_		-	-	-	-	-	-	_	-	-	-	_
Daily, Summer (Max)	_	_	-	-	-	_	_	-	-		-	_	-	_	-	-	-	_
Worker	0.07	0.06	0.06	1.03	0.00	0.00	0.17	0.17	0.00	0.04	0.04		188	188	0.01	0.01	0.69	191
Vendor	0.01	< 0.005	0.13	0.04	< 0.005	< 0.005	0.03	0.04	< 0.005	0.01	0.01	-	121	121	< 0.005	0.02	0.34	127
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)		_	-	-	-	_	-	-	-	_	-	_	-	_	-	-	-	-
Worker	0.06	0.06	0.06	0.78	0.00	0.00	0.17	0.17	0.00	0.04	0.04	-	173	173	0.01	0.01	0.02	175
Vendor	0.01	< 0.005	0.14	0.04	< 0.005	< 0.005	0.03	0.04	< 0.005	0.01	0.01	-	121	121	< 0.005	0.02	0.01	127
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Average Daily					-				-						-			

MORV 009 Detailed Report, 3/29/2024

Worker	0.04	0.03	0.04	0.47	0.00	0.00	0.10	0.10	0.00	0.02	0.02	-	99.9	99.9	< 0.005	< 0.005	0.17	101
Vendor	< 0.005	< 0.005	0.08	0.02	< 0.005	< 0.005	0.02	0.02	< 0.005	0.01	0.01	-	69.2	69.2	< 0.005	0.01	0.09	72.4
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	-	-		-	-	-		-	-				-	-		-	-	
Worker	0.01	0.01	0.01	0.09	0.00	0.00	0.02	0.02	0.00	< 0.005	< 0.005	-	16.5	16.5	< 0.005	< 0.005	0.03	16.8
Vendor	< 0.005	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-	11.5	11.5	< 0.005	< 0.005	0.01	12.0
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00

3.8. Building Construction (2025) - Mitigated

Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_			-	-		-	_		-		-	<u> </u>		(1	-	_
Daily, Summer (Max)		-	-	-		-		-	-	-		-	-	—	-	-	-	-
Off-Road Equipmen	1.35 t	1.13	10.4	13.0	0.02	0.43	-	0.43	0.40	-	0.40	-	2,398	2,398	0.10	0.02		2,406
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_		-	_	0	_	-	-		_	_	-	_	_	_	-	_
Off-Road Equipmen	1.35 t	1.13	10.4	13.0	0.02	0.43		0.43	0.40	-	0.40	-	2,398	2,398	0.10	0.02	-	2,406
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	-	_		-	-	_		-	-		-	-	-	_	-	-	-	_
Off-Road Equipmen	0.77 t	0.64	5.97	7.45	0.01	0.25		0.25	0.23		0.23	-	1,370	1,370	0.06	0.01	-	1,375

Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	-	-	-	_	-	-	-	-	-	-	-	-		-	-	-	_
Off-Road Equipmen	0.14 t	0.12	1.09	1.36	< 0.005	0.05	-	0.05	0.04	_	0.04	-	227	227	0.01	< 0.005	-	228
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	-	-	-	-	-		-	-				-		-	-	-	
Daily, Summer (Max)		_	_	-	-	_	_	-	-	_	_	2 7 21	-	_	-	-	_	
Worker	0.07	0.06	0.06	1.03	0.00	0.00	0.17	0.17	0.00	0.04	0.04		188	188	0.01	0.01	0.69	191
Vendor	0.01	< 0.005	0.13	0.04	< 0.005	< 0.005	0.03	0.04	< 0.005	0.01	0.01	-	121	121	< 0.005	0.02	0.34	127
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_
Worker	0.06	0.06	0.06	0.78	0.00	0.00	0.17	0.17	0.00	0.04	0.04	-	173	173	0.01	0.01	0.02	175
Vendor	0.01	< 0.005	0.14	0.04	< 0.005	< 0.005	0.03	0.04	< 0.005	0.01	0.01		121	121	< 0.005	0.02	0.01	127
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	-	-	-	-	-	1.7 1.0	-	-	-	-	-	-		-		_	_
Worker	0.04	0.03	0.04	0.47	0.00	0.00	0.10	0.10	0.00	0.02	0.02	-	99.9	99.9	< 0.005	< 0.005	0.17	101
Vendor	< 0.005	< 0.005	0.08	0.02	< 0.005	< 0.005	0.02	0.02	< 0.005	0.01	0.01		69.2	69.2	< 0.005	0.01	0.09	72.4
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-
Worker	0.01	0.01	0.01	0.09	0.00	0.00	0.02	0.02	0.00	< 0.005	< 0.005	-	16.5	16.5	< 0.005	< 0.005	0.03	16.8
Vendor	< 0.005	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-	11.5	11.5	< 0.005	< 0.005	0.01	12.0
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00

3.9. Building Construction (2026) - Unmitigated

and the second s		-	and the second s	lanes.	n			I Lange and the second			Lange and		A CONTRACTOR OF A CONTRACTOR	-		lane and	14	
Location	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite		_		-	-	_		-	-				-			-		_
Daily, Summer (Max)		_	-	-		_	-	-	-		-	-	-			-	-	_
Daily, Winter (Max)		_		_	_				-	2		1	-			-	-	_
Off-Road Equipmen	1.28 t	1.07	9.85	13.0	0.02	0.38		0.38	0.35		0.35	-	2,397	2,397	0.10	0.02	-	2,405
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	-		-		-		-	-	—	-	-	-	-	-	-	-	-
Off-Road Equipmen	0.08 t	0.06	0.60	0.79	< 0.005	0.02		0.02	0.02		0.02	-	145	145	0.01	< 0.005	-	146
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	-	-	-	_	-	-	-	-	_	-	-	-	_	-	_	-	_
Off-Road Equipmen	0.01 t	0.01	0.11	0.14	< 0.005	< 0.005	-	< 0.005	< 0.005	_	< 0.005		24.1	24.1	< 0.005	< 0.005	-	24.2
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	-	-	-	_	-	-	-	_	_	-	-	-	_	-	-	_	_
Daily, Summer (Max)	_	-	-	-	-	-	-	-	-	8	-	-	-	-	-	-	-	-
Daily, Winter (Max)	_	_	-	-	_	_	-	-	-	_	-	-	_			-	-	_

MORV 009 Detailed Report, 3/29/2024

Worker	0.06	0.05	0.06	0.73	0.00	0.00	0.17	0.17	0.00	0.04	0.04	-	169	169	< 0.005	0.01	0.02	171
Vendor	0.01	< 0.005	0.13	0.04	< 0.005	< 0.005	0.03	0.04	< 0.005	0.01	0.01	-	119	119	< 0.005	0.02	0.01	125
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	-	-			-	-			-	-	-	17	-				-	-
Worker	< 0.005	< 0.005	< 0.005	0.05	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005		10.4	10.4	< 0.005	< 0.005	0.02	10.5
Vendor	< 0.005	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005		7.23	7.23	< 0.005	< 0.005	0.01	7.57
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	-	_		-	-	_		-	-	e		-	-	_		-	-	-
Worker	< 0.005	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	-	1.72	1.72	< 0.005	< 0.005	< 0.005	1.74
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-	1.20	1.20	< 0.005	< 0.005	< 0.005	1.25
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00

3.10. Building Construction (2026) - Mitigated

Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	-	—			_	-	-	-	-	_	-	-	-	-		-	-	_
Daily, Summer (Max)		_	-	-	-	_	_	-	-	_	-	-	-	_	-	-	-	_
Daily, Winter (Max)		_	-	-	-	-	_	-	-	-	-	-	-	_	_	-	-	_
Off-Road Equipmen	1.28 t	1.07	9.85	13.0	0.02	0.38	_	0.38	0.35	_	0.35	_	2,397	2,397	0.10	0.02	-	2,405
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	-	-	-	-	-	-		-	-	-	-	-	_		-	-	_

MORV 009 Detailed Report, 3/29/2024

Off-Road Equipmer	0.08 t	0.06	0.60	0.79	< 0.005	0.02		0.02	0.02	-	0.02	-	145	145	0.01	< 0.005	-	146
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	-		-	-	-	-	-	-	-	-	_	-	-	-	-	-	-
Off-Road Equipmer	0.01 t	0.01	0.11	0.14	< 0.005	< 0.005	-	< 0.005	< 0.005	-	< 0.005	-	24.1	24.1	< 0.005	< 0.005	-	24.2
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	-	-	-	-	-		-	-	_			-	—	-		-	_
Daily, Summer (Max)	_		_	-	_			-	_	_	-		-			-	_	
Daily, Winter (Max)			_	-	-			-	-		_		-			-	_	
Worker	0.06	0.05	0.06	0.73	0.00	0.00	0.17	0.17	0.00	0.04	0.04		169	169	< 0.005	0.01	0.02	171
Vendor	0.01	< 0.005	0.13	0.04	< 0.005	< 0.005	0.03	0.04	< 0.005	0.01	0.01	-	119	119	< 0.005	0.02	0.01	125
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	<u></u>	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	-	-	-	-	-	-	-	-	_	-	-	-	_	-			_
Worker	< 0.005	< 0.005	< 0.005	0.05	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	-	10.4	10.4	< 0.005	< 0.005	0.02	10.5
Vendor	< 0.005	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-	7.23	7.23	< 0.005	< 0.005	0.01	7.57
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_		-		_	-		-	-	—	_	-	-	—	-		-	—
Worker	< 0.005	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005		1.72	1.72	< 0.005	< 0.005	< 0.005	1.74
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-	1.20	1.20	< 0.005	< 0.005	< 0.005	1.25
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00

3.11. Paving (2026) - Unmitigated

MORV 009 Detailed Report, 3/29/2024

Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_		-	-	-	-	-	-	-		-		-			-	-	-
Daily, Summer (Max)	_	-	-	-	-	_	_	-	-	-	-	-	-	-	-	-	-	-
Daily, Winter (Max)	_	-	-	-	-	_	-	-	-	_	-	-	-	_	-	-	-	-
Off-Road Equipmen	0.91 t	0.76	7.12	9.94	0.01	0.32	-	0.32	0.29	_	0.29	-	1,511	1,511	0.06	0.01	-	1,516
Paving	-	0.00	-	-	-	-	-		-	() <u> </u>		-	-			-	-	-
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	-		-	-		-		-	3 	-	-	-	_		-	-	
Off-Road Equipmen	0.05 t	0.04	0.39	0.54	< 0.005	0.02	-	0.02	0.02	8	0.02	-	82.8	82.8	< 0.005	< 0.005	-	83.1
Paving	_	0.00		-	-	_		-	-		-		-	<u> </u>	-		-	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	-	-	_	_	-	-	_	_		-	_	_	<u> </u>	-	_	_	<u> </u>
Off-Road Equipmen	0.01 t	0.01	0.07	0.10	< 0.005	< 0.005	-	< 0.005	< 0.005	-	< 0.005	-	13.7	13.7	< 0.005	< 0.005	-	13.8
Paving	_	0.00		-	-	_	<u> </u>	-	-				-			-	-	-
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	-	-	-	-		-	-	-		-	-	-	_	-	-	-	_
Daily, Summer (Max)			-	-	-	-	-	-	-		-	_	-		-	-	-	_

MORV 009 Detailed Report, 3/29/2024

Daily, Winter (Max)	-	_	-	-	-	_	-	-	-	_	-	-	-		-	-	-	-
Worker	0.07	0.06	0.07	0.82	0.00	0.00	0.20	0.20	0.00	0.05	0.05	-	190	190	< 0.005	0.01	0.02	193
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	-	-			-	-	-	-	-	-	-	-	-	-	-		-	-
Worker	< 0.005	< 0.005	< 0.005	0.05	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005		10.6	10.6	< 0.005	< 0.005	0.02	10.7
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	-	-		-	-	_	-	-	-	s <u></u> 0	-	-	-	_		-	-	-
Worker	< 0.005	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	-	1.75	1.75	< 0.005	< 0.005	< 0.005	1.77
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.12. Paving (2026) - Mitigated

Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite		-	-	-	-	-	-	-	-		-	—	-		-	-	-	_
Daily, Summer (Max)	_	_	-	-	-	-	-	-	_	_	_	-	_	_	_	-	-	_
Daily, Winter (Max)	_	_	-	-	-	-	-	-	_		_	-	_		_	-	_	_
Off-Road Equipmer	0.91 t	0.76	7.12	9.94	0.01	0.32	-	0.32	0.29	_	0.29	-	1,511	1,511	0.06	0.01	-	1,516
Paving	_	0.00	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_

Average — Daily —	5 0.04	-											1					
Off Road 0.05	5 0.04	4				_		-	-	-	-	-	-		-	-	-	_
Equipment		4	0.39	0.54	< 0.005	0.02	-	0.02	0.02	-	0.02	-	82.8	82.8	< 0.005	< 0.005	-	83.1
Paving —	0.00	0.	_	-	_	_	_	-			-	_	_	-	-	_	_	-
Onsite 0.00 truck	0.00	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual —	-			_	_	-	-	-	_	-	-		-	-	-			-
Off-Road 0.01 Equipment	1 0.01)1	0.07	0.10	< 0.005	< 0.005		< 0.005	< 0.005	() []	< 0.005		13.7	13.7	< 0.005	< 0.005		13.8
Paving —	0.00	0 -		-	-	-	-	-	-	-		-	-	-		-	-	-
Onsite 0.00 truck	0.00	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite —	_	-	<u></u>	-	-	-	<u></u>		-		-		-				-	_
Daily, — Summer (Max)	-	-		-	-	-	-	-	-	_	-	-	-	-	_	-	-	_
Daily, — Winter (Max)	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	_
Worker 0.07	7 0.06	6	0.07	0.82	0.00	0.00	0.20	0.20	0.00	0.05	0.05	-	190	190	< 0.005	0.01	0.02	193
Vendor 0.00	0.00	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Hauling 0.00	0.00	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average — Daily	-		-	-	-	-			-	-	-	-	-	-	-		-	_
Worker < 0.0	.005 < 0.	.005	< 0.005	0.05	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005		10.6	10.6	< 0.005	< 0.005	0.02	10.7
Vendor 0.00	0.00	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Hauling 0.00	0.00	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual —	_	-	<u>a-a</u> r	-	-	_	-		-	_	-		-	_		-	-	_
Worker < 0.0	.005 < 0.	.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	-	1.75	1.75	< 0.005	< 0.005	< 0.005	1.77

MORV 009 Detailed Report, 3/29/2024

Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00

3.13. Architectural Coating (2026) - Unmitigated

Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-
Daily, Summer (Max)	_	-	-	-	-	-	-	-	-		-	_	-		-	_	_	_
Daily, Winter (Max)	_			-	-	_		-	-		-	-	-		_	-	_	_
Off-Road Equipmen	0.15 t	0.12	0.86	1.13	< 0.005	0.02	-	0.02	0.02		0.02	_	134	134	0.01	< 0.005	-	134
Architect ural Coatings	_	33.7	-	-	-	_	_	-	-	_	-	-	-	_	-	-	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	-	-	-	-	_		-	-		-	-	-	-	-	-	-	_
Off-Road Equipmen	0.01 t	0.01	0.05	0.06	< 0.005	< 0.005	-	< 0.005	< 0.005		< 0.005	-	7.32	7.32	< 0.005	< 0.005	-	7.34
Architect ural Coatings	_	1.84	-	-	-	-		-	-	_	-	-	-	-	-	-		-
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1	0.00	0.00	0.00	0.00	0.00	0.00
Annual		_	-	-	_	_			-			-	-	-		-		_
Off-Road Equipmen	< 0.005 t	< 0.005	0.01	0.01	< 0.005	< 0.005	-	< 0.005	< 0.005	-	< 0.005	-	1.21	1.21	< 0.005	< 0.005		1.22

MORV 009 Detailed	Report, 3/29/2024
-------------------	-------------------

Architect Coatings	-	0.34	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Daily, Summer (Max)	_	_	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-
Daily, Winter (Max)		_	-	-	-	-		-	-		-	-	-	-	-	-	-	_
Worker	0.01	0.01	0.01	0.15	0.00	0.00	0.03	0.03	0.00	0.01	0.01	-	33.8	33.8	< 0.005	< 0.005	< 0.005	34.2
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Average Daily		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Worker	< 0.005	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	-	1.87	1.87	< 0.005	< 0.005	< 0.005	1.90
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	-	-	-	_	-	-	-	-	_	-	-	-	-	-	-	_	-
Worker	< 0.005	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	-	0.31	0.31	< 0.005	< 0.005	< 0.005	0.31
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00

3.14. Architectural Coating (2026) - Mitigated

Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_		-	_	_	-	-	_	_	-	-	-		-	-	_	

Daily, Summer (Max)	-		-	-	_	-	-	-	-	-	-	-	-		_	-	-	_
Daily, Winter (Max)		_	-	-		_	-	-	-	_	-	-	-	_	_	-	-	_
Off-Road Equipmen	0.15 t	0.12	0.86	1.13	< 0.005	0.02	-	0.02	0.02	_	0.02	-	134	134	0.01	< 0.005	-	134
Architect ural Coatings	_	33.7	-	-	_	_	-	-	-	_	-	-	_	_	-	-	-	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily		-	-	-	_	-	-	-	-	-	-	-	-	_	-	-	-	_
Off-Road Equipmen	0.01 t	0.01	0.05	0.06	< 0.005	< 0.005	-	< 0.005	< 0.005	-	< 0.005	-	7.32	7.32	< 0.005	< 0.005	-	7.34
Architect ural Coatings	_	1.84	-	-		_	_	-	-	-	-	-		_		-	-	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	-	-		_	-		-		-	-	_	_	-	-		_	-
Off-Road Equipmen	< 0.005 t	< 0.005	0.01	0.01	< 0.005	< 0.005		< 0.005	< 0.005	_	< 0.005		1.21	1.21	< 0.005	< 0.005	-	1.22
Architect ural Coatings	—	0.34		-	_	_	-	-	_	-	-	-	_	—	_	-	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	-		_	_		-	_		-	-	-				_	_
Daily, Summer (Max)		_	-	-	_	_	-	-	-	-	-	_	-	_	-	-	-	-

MORV 009 Detailed	Report,	3/29/2024
-------------------	---------	-----------

Daily, Winter (Max)	-	_	-	-	-	_	-	-	-	-	-	-	-	_	-	-	-	-
Worker	0.01	0.01	0.01	0.15	0.00	0.00	0.03	0.03	0.00	0.01	0.01	-	33.8	33.8	< 0.005	< 0.005	< 0.005	34.2
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	-	-		-	-	-	-	-	-	-	-		-	-	-	-	-	-
Worker	< 0.005	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005		1.87	1.87	< 0.005	< 0.005	< 0.005	1.90
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	-	-		-	-		-	-	-		-	-	-	_	-	-	-	-
Worker	< 0.005	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	-	0.31	0.31	< 0.005	< 0.005	< 0.005	0.31
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00

4. Operations Emissions Details

4.1. Mobile Emissions by Land Use

4.1.1. Unmitigated

Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	-	_		_	_	_	-	_	_	_	_	_	_	_
Single Family Housing	1.46	1.36	1.06	9.62	0.02	0.02	1.98	2.00	0.02	0.50	0.52	_	2,342	2,342	0.10	0.11	8.07	2,385

MORV 009 Detailed Report, 3/29/2024

Total	1.46	1.36	1.06	9.62	0.02	0.02	1.98	2.00	0.02	0.50	0.52	-	2,342	2,342	0.10	0.11	8.07	2,385
Daily, Winter (Max)	-	-		-	-	-	-	-		_	-	-	-	-	-	-	-	-
Single Family Housing	1.37	1.27	1.14	8.25	0.02	0.02	1.98	2.00	0.02	0.50	0.52	-	2,201	2,201	0.11	0.11	0.21	2,238
Total	1.37	1.27	1.14	8.25	0.02	0.02	1.98	2.00	0.02	0.50	0.52	-	2,201	2,201	0.11	0.11	0.21	2,238
Annual	-	-	-	-	-	-		-	_		-	-	-	s	-	-	_	_
Single Family Housing	0.24	0.22	0.21	1.52	< 0.005	< 0.005	0.35	0.35	< 0.005	0.09	0.09	-	360	360	0.02	0.02	0.56	366
Total	0.24	0.22	0.21	1.52	< 0.005	< 0.005	0.35	0.35	< 0.005	0.09	0.09	_	360	360	0.02	0.02	0.56	366

4.1.2. Mitigated

Land Use	TOG	ROG	NOx	co	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	-	_	_		-	_	_	_	-	-	_	_	_		_
Single Family Housing	1.46	1.36	1.06	9.62	0.02	0.02	1.98	2.00	0.02	0.50	0.52	-	2,342	2,342	0.10	0.11	8.07	2,385
Total	1.46	1.36	1.06	9.62	0.02	0.02	1.98	2.00	0.02	0.50	0.52	-	2,342	2,342	0.10	0.11	8.07	2,385
Daily, Winter (Max)	_	_	_	-	-	_		-	_	_	-	-	-	_	_	_		-
Single Family Housing	1.37	1.27	1.14	8.25	0.02	0.02	1.98	2.00	0.02	0.50	0.52	-	2,201	2,201	0.11	0.11	0.21	2,238
Total	1.37	1.27	1.14	8.25	0.02	0.02	1.98	2.00	0.02	0.50	0.52	-	2,201	2,201	0.11	0.11	0.21	2,238
Annual		_	_	-	_	_	_	-	_	_	-	_	_	_	_	_	_	_

MORV 009 Detailed Report, 3/29/2024

Single Family Housing	0.24	0.22	0.21	1.52	< 0.005	< 0.005	0.35	0.35	< 0.005	0.09	0.09	-	360	360	0.02	0.02	0.56	366
Total	0.24	0.22	0.21	1.52	< 0.005	< 0.005	0.35	0.35	< 0.005	0.09	0.09	-	360	360	0.02	0.02	0.56	366

4.2. Energy

4.2.1. Electricity Emissions By Land Use - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	TOG	ROG	NOx	co	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	-		-	_	_	-	-	-		-		-	_	_	_	_	_
Single Family Housing	_			-	-		_	-	_		-	-	429	429	0.03	< 0.005	_	431
Total		_	_	-		_		-	-			_	429	429	0.03	< 0.005	-	431
Daily, Winter (Max)	_	_	-	-	-	-	_	-	-	_	-	-	-	_	-	-	-	_
Single Family Housing		-	-	-	-	_	_	-	-	_	-	-	429	429	0.03	< 0.005	-	431
Total	-	-	-	-	_	—	-	-	_	-	-	-	429	429	0.03	< 0.005	_	431
Annual		-	-	-	_	-	-	-		-	-	-	-	-	_	-	_	_
Single Family Housing		_		-	_	_		-	-	_	-	-	71.0	71.0	0.01	< 0.005	_	71.4
Total	_	_		_		_	-	_	_			_	71.0	71.0	0.01	< 0.005	_	71.4

4.2.2. Electricity Emissions By Land Use - Mitigated

MORV 009 Detailed Report, 3/29/2024

Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_		-	-	_		_	_		_	_	-			-	-	_
Single Family Housing			-	-	-		-	_	_	s <u></u> ¥)	-	_	429	429	0.03	< 0.005	_	431
Total	-	_	-	-	<u> </u>	_	-		-			<u></u>	429	429	0.03	< 0.005	-	431
Daily, Winter (Max)	_		-	-	-	_	-	_		_	_	_		_	_	-	-	_
Single Family Housing	_	_	-	-	-	_	_	_	_		_	_	429	429	0.03	< 0.005	-	431
Total	-	—	-	-	<u> </u>	—	-	—	-		-	-	429	429	0.03	< 0.005	-	431
Annual	_	_		-				-	-	<u> </u>			-	<u> </u>		-	-	_
Single Family Housing	_	_	_	-	_	_	-	_			_	_	71.0	71.0	0.01	< 0.005	_	71.4
Total	-	-		-	_		-		-	_	-		71.0	71.0	0.01	< 0.005	-	71.4

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

4.2.3. Natural Gas Emissions By Land Use - Unmitigated

Land Use	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Daily, Summer (Max)				-		-	-	_	_	i—II		-	-	-	-		_	_
Single Family Housing	0.04	0.02	0.33	0.14	< 0.005	0.03	-	0.03	0.03	-	0.03	-	422	422	0.04	< 0.005		423

MORV 009 Detailed Report, 3/29/2024

Total	0.04	0.02	0.33	0.14	< 0.005	0.03	-	0.03	0.03	_	0.03	-	422	422	0.04	< 0.005	-	423
Daily, Winter (Max)	_	_	-	-	-	_	-	-		_	_	-	-	_	-	-		_
Single Family Housing	0.04	0.02	0.33	0.14	< 0.005	0.03	-	0.03	0.03	_	0.03	-	422	422	0.04	< 0.005		423
Total	0.04	0.02	0.33	0.14	< 0.005	0.03	-	0.03	0.03	—	0.03	_	422	422	0.04	< 0.005	-	423
Annual	_	-	-	-	_	-		-		88		_	-	s	-	-	-	_
Single Family Housing	0.01	< 0.005	0.06	0.03	< 0.005	< 0.005	-	< 0.005	< 0.005	_	< 0.005	10000	69.8	69.8	0.01	< 0.005		70.0
Total	0.01	< 0.005	0.06	0.03	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005		69.8	69.8	0.01	< 0.005	_	70.0

4.2.4. Natural Gas Emissions By Land Use - Mitigated

Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	-	-	_	_	_	-	_	_	-	-	_	_	_		_
Single Family Housing	0.04	0.02	0.33	0.14	< 0.005	0.03	_	0.03	0.03		0.03	-	422	422	0.04	< 0.005	_	423
Total	0.04	0.02	0.33	0.14	< 0.005	0.03	-	0.03	0.03	—	0.03	_	422	422	0.04	< 0.005	-	423
Daily, Winter (Max)	-	_	_	-	-	_	-	-	-		-	-	-	_	_	_		
Single Family Housing	0.04	0.02	0.33	0.14	< 0.005	0.03	-	0.03	0.03		0.03	-	422	422	0.04	< 0.005		423
Total	0.04	0.02	0.33	0.14	< 0.005	0.03	-	0.03	0.03	<u> </u>	0.03		422	422	0.04	< 0.005	-	423
Annual	_	_	-	-	_	-		-	_	-	_	-	-	_	_	_	-	-

MORV 009 Detailed Report, 3/29/2024

Single Family Housing	0.01	< 0.005	0.06	0.03	< 0.005	< 0.005	-	< 0.005	< 0.005	_	< 0.005		69.8	69.8	0.01	< 0.005		70.0
Total	0.01	< 0.005	0.06	0.03	< 0.005	< 0.005	-	< 0.005	< 0.005		< 0.005	-	69.8	69.8	0.01	< 0.005	-	70.0

4.3. Area Emissions by Source

4.3.1. Unmitigated

Source	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	-	-	-	-	-	-	-	-		-	-	-	-	-	-	_	_
Hearths	10.7	9.66	0.77	18.8	0.05	2.64		2.64	2.59		2.59	347	662	1,009	1.03	0.01	-	1,038
Consum er Products	_	2.30	-	-	-	_	-	-	-	_	-	-	-	-	-	-	-	_
Architect ural Coatings	_	0.18	-	-	-	_	-	-	-	_	_	-	-	-	-	-	-	
Landsca pe Equipme nt	0.20	0.19	0.02	2.10	< 0.005	< 0.005		< 0.005	< 0.005	_	< 0.005	_	5.61	5.61	< 0.005	< 0.005	_	5.63
Total	10.9	12.3	0.79	20.9	0.05	2.64	-	2.64	2.59		2.59	347	668	1,014	1.03	0.01	-	1,044
Daily, Winter (Max)	_	-	-	-	-	-	-	-	-			_	-	-	-	-	-	-
Hearths	10.7	9.66	0.77	18.8	0.05	2.64	-	2.64	2.59		2.59	347	662	1,009	1.03	0.01	-	1,038
Consum er Products	_	2.30	-	-	-		-	_	-		_		-	. <u> </u>	-	-	-	_

MORV 009 Detailed Report, 3/29/2024

Architect ural	_	0.18	-	-	-	-		-	-	_	-	-	-		-	-	-	-
Total	10.7	12.2	0.77	18.8	0.05	2.64		2.64	2.59	-	2.59	347	662	1,009	1.03	0.01	-	1,038
Annual	-		-	-	_		-	_	-	_	-	-	_		-	-	-	
Hearths	0.13	0.12	0.01	0.24	< 0.005	0.03	-	0.03	0.03		0.03	3.93	7.51	11.4	0.01	< 0.005	_	11.8
Consum er Products	-	0.42	-		-	_	-	-	-	-	-		-	-	-	-		_
Architect ural Coatings	_	0.03	_	-			-	-	-	3 3	-	-	-	_	-	-		_
Landsca pe Equipme nt	0.02	0.02	< 0.005	0.26	< 0.005	< 0.005		< 0.005	< 0.005	2	< 0.005	3	0.64	0.64	< 0.005	< 0.005		0.64
Total	0.16	0.60	0.01	0.50	< 0.005	0.03	_	0.03	0.03	_	0.03	3.93	8.15	12.1	0.01	< 0.005		12.4

4.3.2. Mitigated

Source	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	-	-	-		-	-	-		-	-	-	_			_	_
Hearths	10.7	9.66	0.77	18.8	0.05	2.64	-	2.64	2.59	-	2.59	347	662	1,009	1.03	0.01	-	1,038
Consum er Products		2.30		-	-	_	-	_	-		-	-	-	_	_	_	_	_
Architect ural Coatings		0.18		-	-	-	-	-	-	-	-	-	-	_	-	_		_
Landsca pe Equipme nt	0.20	0.19	0.02	2.10	< 0.005	< 0.005	-	< 0.005	< 0.005	3	< 0.005	_	5.61	5.61	< 0.005	< 0.005	_	5.63

MORV 009 Detailed Report, 3/29/2024

Total	10.9	12.3	0.79	20.9	0.05	2.64	-	2.64	2.59		2.59	347	668	1,014	1.03	0.01	-	1,044
Daily, Winter (Max)	_	-	-	-	-	-	-	-	-	_	_	-	-	_	-	-	-	_
Hearths	10.7	9.66	0.77	18.8	0.05	2.64	-	2.64	2.59	-	2.59	347	662	1,009	1.03	0.01	-	1,038
Consum er Products	-	2.30	-	-	-	_	-	-	-		-	-	-		-	_	-	_
Architect ural Coatings	_	0.18	-	-	-	_	_	-	-	8	_	_	-		-	_		_
Total	10.7	12.2	0.77	18.8	0.05	2.64		2.64	2.59	-	2.59	347	662	1,009	1.03	0.01	_	1,038
Annual	-	-	-		_	-		-	-	-			-	_		-	-	-
Hearths	0.13	0.12	0.01	0.24	< 0.005	0.03		0.03	0.03	_	0.03	3.93	7.51	11.4	0.01	< 0.005	-	11.8
Consum er Products	-	0.42	-	-	-	—	-	-	-	-		-	-	-	-	-	-	—
Architect ural Coatings	-	0.03		-	-	-	-	-	-	-	-	-	-	-	-	-	-	_
Landsca pe Equipme nt	0.02	0.02	< 0.005	0.26	< 0.005	< 0.005	_	< 0.005	< 0.005	3 <u>-</u> 11	< 0.005	-	0.64	0.64	< 0.005	< 0.005		0.64
Total	0.16	0.60	0.01	0.50	< 0.005	0.03	_	0.03	0.03	_	0.03	3.93	8.15	12.1	0.01	< 0.005	_	12.4

4.4. Water Emissions by Land Use

4.4.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Use																		

46/77

MORV 009 Detailed Report, 3/29/2024

Daily, Summer (Max)	_	-		-	-	_	-	_	-		-	-	-		-	-		
Single Family Housing	_	_	-	-	-	_	-	_	-		-	2.88	68.1	70.9	0.30	0.01		80.7
Total	-	-	-	-	-			-	-			2.88	68.1	70.9	0.30	0.01	-	80.7
Daily, Winter (Max)	_	_	-	-	-	_	_	_	-		-	-	-	_	_	-		
Single Family Housing		_	-	-	-	_	_	_	-		-	2.88	68.1	70.9	0.30	0.01		80.7
Total	_	-	-	-	-		-	-	_	-	-	2.88	68.1	70.9	0.30	0.01	-	80.7
Annual	_	·	-	-	-	<u> </u>	-	-	-	:	-		-	. <u> </u>		_	_	
Single Family Housing		_	-	-	-	_	_		-		-	0.48	11.3	11.7	0.05	< 0.005		13.4
Total		-			_							0.48	11.3	11.7	0.05	< 0.005	_	13.4

4.4.2. Mitigated

Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)		_	-	-		_	-	-	_		_	-	_	_	-	_	_	_
Single Family Housing	_	_	_	-	_	_		-	-	_	_	2.88	68.1	70.9	0.30	0.01	_	80.7
Total	-	—	-	-		—	-	-		-	-	2.88	68.1	70.9	0.30	0.01	-	80.7
Daily, Winter (Max)	_	_	_	-		_	_	-	_	_	_	-	_	_	_	_		
									47 / 77									

MORV 009 Detailed Report, 3/29/2024

Single Family Housing	_	-	_	-	-		_	_	_			2.88	68.1	70.9	0.30	0.01		80.7
Total	-	-		-	-	-			-	_		2.88	68.1	70.9	0.30	0.01	-	80.7
Annual	-	-	-	-	-	_	-	—	-		-	-	-		-	-	-	-
Single Family Housing	_			-	-		-	_	-	s	_	0.48	11.3	11.7	0.05	< 0.005	_	13.4
Total	_			-	-			-	-	3 2		0.48	11.3	11.7	0.05	< 0.005	-	13.4

4.5. Waste Emissions by Land Use

4.5.1. Unmitigated

Land Use	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	-	-	-	-	_	-	-	-		-	-	-	-	-	-	_	_
Single Family Housing		_		-	-		-	-	-	:	-	18.3	0.00	18.3	1.83	0.00	-	64.1
Total	-			-	_				-	. <u> </u>		18.3	0.00	18.3	1.83	0.00	-	64.1
Daily, Winter (Max)		_	_	-	_		-	-	-		_	-	-	_	-	-	_	_
Single Family Housing		_	_	-	_	_	_	-	-		-	18.3	0.00	18.3	1.83	0.00	_	64.1
Total		-			_	-		-	-		-	18.3	0.00	18.3	1.83	0.00		64.1
Annual		=	-	-	<u>-</u>	=	-	-	-	-		-	-	-	-	-		-

MORV 009 Detailed Report, 3/29/2024

Single Family Housing	_		-	_			_	_	_	3 <u></u> 7	_	3.04	0.00	3.04	0.30	0.00	_	10.6
Total	-	-		-	-	-		-	-	<u> </u>		3.04	0.00	3.04	0.30	0.00	-	10.6

4.5.2. Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	-	-	—		-			_	_		-		_	1		_
Single Family Housing	—	_	_	-	-	_	_	_	_	_	_	18.3	0.00	18.3	1.83	0.00	_	64.1
Total	_	-			_	. <u> </u>				1. <u></u> 11		18.3	0.00	18.3	1.83	0.00		64.1
Daily, Winter (Max)		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
Single Family Housing		-	-	-	-	-	-	-	-	-	-	18.3	0.00	18.3	1.83	0.00		64.1
Total	<u> </u>	-	-	-		—	<u> </u>	-		-		18.3	0.00	18.3	1.83	0.00		64.1
Annual	<u> </u>	_	-			_	<u> </u>	-	-	-	<u></u>		-	<u> </u>			_	-
Single Family Housing	_	-	-	-	-		-	-	-	-	-	3.04	0.00	3.04	0.30	0.00		10.6
Total	-	_	-	-	-	-	-	-	_	-		3.04	0.00	3.04	0.30	0.00		10.6

4.6. Refrigerant Emissions by Land Use

4.6.1. Unmitigated

MORV 009 Detailed Report, 3/29/2024

Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_			-	_			_	_				_		_	_	-	_
Single Family Housing				-	-	_	-	_	_		-	_	-		-	_	0.77	0.77
Total	<u> </u>	_		-	<u> </u>	_	_		-				-				0.77	0.77
Daily, Winter (Max)	_	_	-	-	_	_	-	_	_	_	_	_	_	_	_	_	-	_
Single Family Housing	_		-	-		_	_	_	_		_	_	_	_	_	_	0.77	0.77
Total	-	-	-	-		—		-	-	—		-	-	_		-	0.77	0.77
Annual	-		-	-			-	—	-		-	-	-	<u> </u>	-	-	-	_
Single Family Housing		_	-	_			-	_			_	_	_	_	-	_	0.13	0.13
Total	-		-	-	-	_			-				-	_		-	0.13	0.13

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

4.6.2. Mitigated

Land Use	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)		-		-	-	-	-	-	-	—	-	-	-	-	-	—		_
Single Family Housing		-	-	-		-	-	-		-	-	-		-		-	0.77	0.77

MORV 009 Detailed Report, 3/29/2024

Total	-	-		-	-	-	-	-	-	-	-	-	-	_	-	-	0.77	0.77
Daily, Winter (Max)	_	_	-	-	-	_	-	_	-		-	_	-	_	-	-	-	-
Single Family Housing	-	_	-	-	-	-	-	_	-		-	-	-	_	-	-	0.77	0.77
Total	_	-	-	-	-	-	_	_	-	_	-	_	-	_	-	-	0.77	0.77
Annual	-			-	-			-	-	8			-	a — a		-	-	
Single Family Housing	_	_	-	-	-		_	_	-	-	-	-	-		-	-	0.13	0.13
Total	_	_			_	_			<u> </u>	33			<u> </u>	_			0.13	0.13

4.7. Offroad Emissions By Equipment Type

4.7.1. Unmitigated

Equipme nt Type	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_		_	_	_	-	-	_	-	-	_	_	_	-	-	-,
Total	_	_	-	_		<u> </u>	—		_	_	-	_	_	_	-	_		_
Daily, Winter (Max)	_	_				_		_		_	-	_	_	_		_	_	
Total	_	_		-		_			_	_			_	<u> </u>				_
Annual	<u></u>	-	-	-	<u></u>	-		-		-		_	-	-		-		-
Total	_	-	-		-	_			-	_	_	<u></u>	-	_		-	_	-
4.7.2. Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Equipme nt Type	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	-	_	_	_	-	_	-	_	_	-	-	_	-	-	_	_
Total	-	-	-	-	-	-	-	-	-	_	-	-	-	_	-	-	-	_
Daily, Winter (Max)	_	_		_	_			_	_		-		_		-	-		_
Total	_			-	_	-		-				-	-			_	-	_
Annual	_	_		-	_	_		_	_			-	-			_	_	_
Total	_	-	_	_	_	-	-	-	_		-	-	-		—	-	_	_

4.8. Stationary Emissions By Equipment Type

4.8.1. Unmitigated

Equipme nt Type	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	-	-		-		_	_		_	_	_	-	-	-	
Total	-	<u> </u>		-	—				—		-		—		-		_	<u> </u>
Daily, Winter (Max)			_	_	_					-	_			2				
Total	_	_		_	_			-	_				_	<u> </u>	_		_	_

MORV 009 Detailed Report, 3/29/2024

Annual	<u></u>	_	 -	<u> </u>	<u> </u>	-			<u> </u>	 _	-	_		-	_	-
Total	-	-	 -	_			-	-	-	 _	-		-	_	-	

4.8.2. Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Equipme nt Type	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Daily, Summer (Max)		_	-	_	_	_		_	_	-	-	-	_	_	-		_	
Total	_	_				_			_	_				-			_	_
Daily, Winter (Max)	-	-		_		-	-	-		-		-	-	-		-		-
Total	<u>_</u>	-		-		-		-	-	_		-		_		-	-	-
Annual	<u></u>	<u> </u>	<u></u> -		_		<u> </u>	-	-				-			-	_	_
Total	_	_		_		_	<u></u>	_	_	<u> </u>	_	_	-		_	_	_	_

4.9. User Defined Emissions By Equipment Type

4.9.1. Unmitigated

Equipme nt Type	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_		_		_		_	_		_		-		_	_	_	_
Total	-	_		-		-		-	-	_			-	_		-	_	_

MORV 009 Detailed Report, 3/29/2024

Daily, Winter (Max)	_	-	-	-			-	_	-	 -	_	_	_	-	-	_	_
Total	-	-			-	-			-	 			_			-	-
Annual	-	_	-	-	-	-	-	-	-	 -	-	-		—	_	_	-
Total	-		-	-	-	-		-	-	 		-			-	_	

4.9.2. Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Equipme nt Type	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	-		-		-	<u></u>	-		—	-	-	_	-	-	-		
Total	<u> </u>	—		-		—	-	-		—	-		_	-		-	-	-
Daily, Winter (Max)	_			_	_	0		_	_				_		_	_		
Total	_	-	-	-	<u> -</u>	-	<u></u>	-	_	-		-]	_	_		- 1	_	-
Annual	-	_		-	-	_		-	-	_		_	-	_	_	-	-	_
Total	_	<u> </u>		_	<u> </u>			_	_		-		_			_		

4.10. Soil Carbon Accumulation By Vegetation Type

4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated

Vegetatio	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
n																		

MORV 009 Detailed Report, 3/29/2024

Daily, Summer (Max)	_	-		-	_	-	-	_	-		-	_	-		-	-		_
Total	-			-	-	-		-	-				-			—	-	_
Daily, Winter (Max)	_			-	_	_	-	-	-		-	-	-	_	_	-		_
Total	-	_	-	-			-	-	-			_	-		-	_	_	_
Annual	-			-	-			-	-	s			-			-	_	<u> </u>
Total		-	-	_	_	_	-	_	_		-		_		-	_	_	

4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated

Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_		-	_	_	_	-	-	_		-		_	_	-	_	-
Total	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-
Daily, Winter (Max)	_			-	-			-	-		-	-	_			-	_	_
Total	-	_		-	-	_		-	-			-	-	-		-	-	-
Annual		-		-	-	-	_	-	-			-	-		-	-	-	-
Total	-			-	-	1. <u> </u>		-	-			-	-	. <u> </u>		-	-	

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated

Species T	ŌĠ	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
-----------	----	-----	-----	----	-----	-------	-------	-------	--------	--------	--------	------	-------	------	-----	-----	---	------

MORV 009 Detailed Report, 3/29/2024

Daily, Summer (Max)	_			-	_		-	-		_	—	—	_	_	—	—	_	_
Avoided	_	_		-	-	_		_	-			-	-	_	-	-	_	-
Subtotal	_		_	_		_	_	_	_	_	_	_	_	_	_	-	_	_
Sequest ered	_	_		-	—	_	—	—	-	—	-	_	-	—	-	-	_	-
Subtotal	_	-		_	_	_		_	_	_		-	_	_	-	-	_	_
Remove d	_	-		_		_	-	-	-		-	-	-			-	—	_
Subtotal	_			_		_		_	_	-	_	_	_		_	_	_	_
_	_	-		_		_		_	-	_		_	_	_		_	_	_
Daily, Winter (Max)	_	_	_	_	_			_	-		-		-	_	-		_	_
Avoided	_	_		-	-	_		_	-			<u> </u>	_	5 <u></u> 71		-	_	_
Subtotal	_	_		-	-	_		_	_	_	_	-	_	_	-	-	_	_
Sequest ered	_	_	-	-	_	_		-	-	_	-	_	—	-		-	_	_
Subtotal	_	-		_		-		_	_	_	-	_		_	-	-	_	-
Remove d	_	_	-	-	—	—	-	-	_	3	-	-	_	2	-	_	_	-
Subtotal	_	-		_	_	-		_	-	_		-	_	_		-	_	-
-	_			_		-		_	_		-			_	-			_
Annual	_	_		_		_		_	_	<u> </u>	_	_	_		_	<u> </u>	_	_
Avoided	_	_		_		_		_		_		_	_	_		_	_	_
Subtotal	_	_	_	_	_	_	<u> </u>	_	_	_	_	_	_	_	_	_		_
Sequest ered	_	_		-		_		-	-	_	_	_	_	_		-		_
Subtotal	_	_		_	_	_		_	_	_			_	_			_	_

MORV 009 Detailed Report, 3/29/2024

Remove d	-	-	_	-	-	_		-	-	_	-		-	_	 _		
Subtotal	-	-	-	-	-			-	-			-	-		 -	-	_
-	-	_	-	_	-		-	_	_		-	-	-	_	 _	-	_

4.10.4. Soil Carbon Accumulation By Vegetation Type - Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Vegetatio n	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	-	-	-	_	-	-	-	_	-	-	-	_	-		-		-
Total	<u> </u>	-		-	-	-		-	-	-	-	-	-	-		-	-	_
Daily, Winter (Max)	_	_	_	_	-	_	<u>(am 2</u>)	_	_	_			-		_	_	_	
Total	-	_			-	_	-		-	0			-	<u> </u>			-	-
Annual	-	_	-	-	_				-	<u> </u>			-	_	_	_	_	
Total		-			_	_			_	— :			_	_		-	_	_

4.10.5. Above and Belowground Carbon Accumulation by Land Use Type - Mitigated

Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	-	-	-	-	_	_	_	-		_	_	_	_	_	_	_	_
Total		-		-	-	-			-	1. <u></u> 11			_	1. <u></u> 1.				
Daily, Winter (Max)		-	-	-		-	-	_	-		-	-	-		-	_		-

MORV 009 Detailed Report, 3/29/2024

Total	-	<u> </u>	-	-	<u> </u>	<u> </u>	<u></u>	—		 		-	<u> </u>		-	_	
Annual	-	_	-	-	-		-	-	-	 -	-	-		-	-		_
Total	-		-	-	-				-	 		-			-	_	-2

4.10.6. Avoided and Sequestered Emissions by Species - Mitigated

Species	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)			-	-		_	-		-		-			-	-	-	_	-
Avoided	<u> </u>	-	<u></u>		-	-	<u></u>	_			<u></u> 2			-	<u></u>	-		_
Subtotal	-	_	-	—	<u> </u>	_		-	-		-		-			-	-	_
Sequest ered	_	_	-	-	-		-	-	-	_		-	-	_		-	-	_
Subtotal	<u> </u>	-	-	-	-	-		-	-		-		-	<u> </u>		-	-	_
Remove d	_	_	-	_	_			_	_			-	-			-	_	
Subtotal	_	-		-	-				-				-				-	
		-				—	—			-			_	—	-			_
Daily, Winter (Max)	-			_	_		_	_	_		_		_		_			
Avoided	_			-		_	ala ana ana ana ana ana ana ana ana ana	-						-				_
Subtotal	<u> </u>	-	-	-	<u> </u>	-	-	-		-	-	-	-	—		-	<u> </u>	-
Sequest ered	_	_	<u> </u>	_	_	_	_	—	_				_	_		—	_	_
Subtotal	-	_	-	-	-	—	-	-	-		-	-	-	_		-	-	_
Remove d	_	_	-	-	-	_	-	-	-	_	-	-	-	_		-	-	
Subtotal	_	_		-		_	-	_	-	_	-	-	-	_	-	_	-	_

MORV 009 Detailed Report, 3/29/2024

_	-	_	<u> </u>	-	-	_	_	-		_	-	-	_	<u> </u>	_	_		_
Annual	-	-	-	-	-	-	-	-	-			-	-	_	-	-	-	-
Avoided	-		-	-	-			-	-			-	-			-	-	
Subtotal	_	<u> </u>			_	_				_	-					-	_	_
Sequest ered	_	_	-		_				_	: <u></u> ::	-	-	-					
Subtotal	-			-	_						-	1	-	-			_	
Remove d	-	-	-	-		—	-		-	-	-	-	-	-		-	-	-
Subtotal	<u></u>	-	-	-	_	_	_		_				-				-	-
-	-	_	-	-	_	_	-	-	-	-	_	-	_	_	_			_

5. Activity Data

5.1. Construction Schedule

Phase Name	Phase Type	Start Date	End Date	Days Per Week	Work Days per Phase	Phase Description
Demolition	Demolition	1/1/2025	1/29/2025	5.00	20.0	
Site Preparation	Site Preparation	1/30/2025	2/13/2025	5.00	10.0	_
Grading	Grading	2/14/2025	3/14/2025	5.00	20.0	-
Building Construction	Building Construction	3/15/2025	1/31/2026	5.00	230	-
Paving	Paving	2/1/2026	3/1/2026	5.00	20.0	
Architectural Coating	Architectural Coating	3/2/2026	3/30/2026	5.00	20.0	

5.2. Off-Road Equipment

5.2.1. Unmitigated

Phase Name	Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor

59/77

MORV 009 Detailed Report, 3/29/2024

Demolition	Concrete/Industrial Saws	Diesel	Average	1.00	8.00	33.0	0.73
Demolition	Excavators	Diesel	Average	3.00	8.00	36.0	0.38
Demolition	Rubber Tired Dozers	Diesel	Average	2.00	8.00	367	0.40
Site Preparation	Rubber Tired Dozers	Diesel	Average	3.00	8.00	367	0.40
Site Preparation	Tractors/Loaders/Backh oes	Diesel	Average	4.00	8.00	84.0	0.37
Grading	Excavators	Diesel	Average	1.00	8.00	36.0	0.38
Grading	Graders	Diesel	Average	1.00	8.00	148	0.41
Grading	Rubber Tired Dozers	Diesel	Average	1.00	8.00	367	0.40
Grading	Tractors/Loaders/Backh oes	Diesel	Average	3.00	8.00	84.0	0.37
Building Construction	Cranes	Diesel	Average	1.00	7.00	367	0.29
Building Construction	Forklifts	Diesel	Average	3.00	8.00	82.0	0.20
Building Construction	Generator Sets	Diesel	Average	1.00	8.00	14.0	0.74
Building Construction	Tractors/Loaders/Backh oes	Diesel	Average	3.00	7.00	84.0	0.37
Building Construction	Welders	Diesel	Average	1.00	8.00	46.0	0.45
Paving	Pavers	Diesel	Average	2.00	8.00	81.0	0.42
Paving	Paving Equipment	Diesel	Average	2.00	8.00	89.0	0.36
Paving	Rollers	Diesel	Average	2.00	8.00	36.0	0.38
Architectural Coating	Air Compressors	Diesel	Average	1.00	6.00	37.0	0.48

5.2.2. Mitigated

Phase Name	Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
Demolition	Concrete/Industrial Saws	Diesel	Average	1.00	8.00	33.0	0.73
Demolition	Excavators	Diesel	Average	3.00	8.00	36.0	0.38
Demolition	Rubber Tired Dozers	Diesel	Average	2.00	8.00	367	0.40

MORV 009 Detailed Report, 3/29/2024

Site Preparation	Rubber Tired Dozers	Diesel	Average	3.00	8.00	367	0.40
Site Preparation	Tractors/Loaders/Backh oes	Diesel	Average	4.00	8.00	84.0	0.37
Grading	Excavators	Diesel	Average	1.00	8.00	36.0	0.38
Grading	Graders	Diesel	Average	1.00	8.00	148	0.41
Grading	Rubber Tired Dozers	Diesel	Average	1.00	8.00	367	0.40
Grading	Tractors/Loaders/Backh oes	Diesel	Average	3.00	8.00	84.0	0.37
Building Construction	Cranes	Diesel	Average	1.00	7.00	367	0.29
Building Construction	Forklifts	Diesel	Average	3.00	8.00	82.0	0.20
Building Construction	Generator Sets	Diesel	Average	1.00	8.00	14.0	0.74
Building Construction	Tractors/Loaders/Backh oes	Diesel	Average	3.00	7.00	84.0	0.37
Building Construction	Welders	Diesel	Average	1.00	8.00	46.0	0.45
Paving	Pavers	Diesel	Average	2.00	8.00	81.0	0.42
Paving	Paving Equipment	Diesel	Average	2.00	8.00	89.0	0.36
Paving	Rollers	Diesel	Average	2.00	8.00	36.0	0.38
Architectural Coating	Air Compressors	Diesel	Average	1.00	6.00	37.0	0.48

5.3. Construction Vehicles

5.3.1. Unmitigated

Phase Name	Тгір Туре	One-Way Trips per Day	Miles per Trip	Vehicle Mix
Demolition		-		-
Demolition	Worker	15.0	18.5	LDA,LDT1,LDT2
Demolition	Vendor	-	10.2	HHDT,MHDT
Demolition	Hauling	0.00	20.0	HHDT
Demolition	Onsite truck			HHDT

61/77

Site Preparation		_	-	-
Site Preparation	Worker	17.5	18.5	LDA,LDT1,LDT2
Site Preparation	Vendor	-	10.2	HHDT,MHDT
Site Preparation	Hauling	0.00	20.0	HHDT
Site Preparation	Onsite truck	_	-	HHDT
Grading	2000 - 200 2007 - 20	-	-	2
Grading	Worker	15.0	18.5	LDA,LDT1,LDT2
Grading	Vendor	-	10.2	HHDT,MHDT
Grading	Hauling	0.00	20.0	HHDT
Grading	Onsite truck	-	-	HHDT
Building Construction		_	-	
Building Construction	Worker	13.3	18.5	LDA,LDT1,LDT2
Building Construction	Vendor	3.96	10.2	HHDT,MHDT
Building Construction	Hauling	0.00	20.0	HHDT
Building Construction	Onsite truck	-	-	HHDT
Paving	-	-	-	
Paving	Worker	15.0	18.5	LDA,LDT1,LDT2
Paving	Vendor	-	10.2	HHDT,MHDT
Paving	Hauling	0.00	20.0	HHDT
Paving	Onsite truck	-	-	HHDT
Architectural Coating		_	-	
Architectural Coating	Worker	2.66	18.5	LDA,LDT1,LDT2
Architectural Coating	Vendor		10.2	HHDT,MHDT
Architectural Coating	Hauling	0.00	20.0	HHDT
Architectural Coating	Onsite truck	-	-	HHDT

5.3.2. Mitigated

MORV 009 Detailed Report, 3/29/2024

Phase Name	Тгір Туре	One-Way Trips per Day	Miles per Trip	Vehicle Mix
Demolition		-	-	
Demolition	Worker	15.0	18.5	LDA,LDT1,LDT2
Demolition	Vendor	-	10.2	HHDT,MHDT
Demolition	Hauling	0.00	20.0	HHDT
Demolition	Onsite truck	_	-	HHDT
Site Preparation		_	_	
Site Preparation	Worker	17.5	18.5	LDA,LDT1,LDT2
Site Preparation	Vendor	-	10.2	HHDT,MHDT
Site Preparation	Hauling	0.00	20.0	HHDT
Site Preparation	Onsite truck	-	-	HHDT
Grading	-	_	-	_
Grading	Worker	15.0	18.5	LDA,LDT1,LDT2
Grading	Vendor	_	10.2	HHDT,MHDT
Grading	Hauling	0.00	20.0	HHDT
Grading	Onsite truck	-	-	HHDT
Building Construction		-	-	
Building Construction	Worker	13.3	18.5	LDA,LDT1,LDT2
Building Construction	Vendor	3.96	10.2	HHDT,MHDT
Building Construction	Hauling	0.00	20.0	HHDT
Building Construction	Onsite truck		-	HHDT
Paving	-	_	-	
Paving	Worker	15.0	18.5	LDA,LDT1,LDT2
Paving	Vendor	-	10.2	HHDT,MHDT
Paving	Hauling	0.00	20.0	HHDT
Paving	Onsite truck	-	-	HHDT
Architectural Coating	-	-	-	

MORV 009 Detailed Report, 3/29/2024

Architectural Coating	Worker	2.66	18.5	LDA,LDT1,LDT2
Architectural Coating	Vendor		10.2	HHDT,MHDT
Architectural Coating	Hauling	0.00	20.0	HHDT
Architectural Coating	Onsite truck	_	_	HHDT

5.4. Vehicles

5.4.1. Construction Vehicle Control Strategies

Non-applicable. No control strategies activated by user.

5.5. Architectural Coatings

Phase Name	Residential Interior Area Coated (sq ft)	Residential Exterior Area Coated (sq ft)	Non-Residential Interior Area Coated (sq ft)	Non-Residential Exterior Area Coated (sq ft)	Parking Area Coated (sq ft)
Architectural Coating	217,748	72,583	0.00	0.00	-

5.6. Dust Mitigation

5.6.1. Construction Earthmoving Activities

Phase Name	Material Imported (cy)	Material Exported (cy)	Acres Graded (acres)	Material Demolished (sq. ft.)	Acres Paved (acres)
Demolition	0.00	0.00	0.00		—
Site Preparation	_		15.0	0.00	_
Grading	_		20.0	0.00	_
Paving	0.00	0.00	0.00	0.00	0.41

5.6.2. Construction Earthmoving Control Strategies

Non-applicable. No control strategies activated by user. 5.7. Construction Paving

MORV 009 Detailed Report, 3/29/2024

Land Use	Area Paved (acres)	% Asphalt
Single Family Housing	0.41	0%

5.8. Construction Electricity Consumption and Emissions Factors

kWh per Year and Emission Factor (lb/MWh)

Year	kWh per Year	CO2	CH4	N2O
2025	0.00	453	0.03	< 0.005
2026	0.00	453	0.03	< 0.005

5.9. Operational Mobile Sources

5.9.1. Unmitigated

Land Use Type	Trips/Weekday	Trips/Saturday	Trips/Sunday	Trips/Year	VMT/Weekday	VMT/Saturday	VMT/Sunday	VMT/Year
Single Family Housing	349	353	316	125,963	2,764	2,793	2,503	996,666

5.9.2. Mitigated

Land Use Type	Trips/Weekday	Trips/Saturday	Trips/Sunday	Trips/Year	VMT/Weekday	VMT/Saturday	VMT/Sunday	VMT/Year
Single Family Housing	349	353	316	125,963	2,764	2,793	2,503	996,666

5.10. Operational Area Sources

5.10.1. Hearths

5.10.1.1. Unmitigated

Hearth Type	Unmitigated (number)

65/77

MORV 009 Detailed Report, 3/29/2024

Single Family Housing	
Wood Fireplaces	2
Gas Fireplaces	31
Propane Fireplaces	0
Electric Fireplaces	0
No Fireplaces	Ĩ
Conventional Wood Stoves	0
Catalytic Wood Stoves	2
Non-Catalytic Wood Stoves	2
Pellet Wood Stoves	0

5.10.1.2. Mitigated

Hearth Type	Unmitigated (number)
Single Family Housing	-
Wood Fireplaces	2
Gas Fireplaces	31
Propane Fireplaces	0
Electric Fireplaces	0
No Fireplaces	4
Conventional Wood Stoves	0
Catalytic Wood Stoves	2
Non-Catalytic Wood Stoves	2
Pellet Wood Stoves	0

5.10.2. Architectural Coatings

Residential Interior Area Coated (sq ft)	Residential Exterior Area Coated (sq ft)	Non-Residential Interior Area Coated (sq ft)	Non-Residential Exterior Area Coated (sq ft)	Parking Area Coated (sq ft)

66/77

CITY OF MORENO VALLEY • AIR QUALITY STUDY 37 SINGLE-FAMILY UNIT DEVELOPMENT • TENTATIVE TRACT MAP 38480

MORV 009 Detailed Report, 3/29/2024

217748.25	72,583	0.00	0.00	-

5.10.3. Landscape Equipment

Season	Unit	Value
Snow Days	day/yr	0.00
Summer Days	day/yr	250

5.10.4. Landscape Equipment - Mitigated

Season	Unit	Value
Snow Days	day/yr	0.00
Summer Days	day/yr	250

5.11. Operational Energy Consumption

5.11.1. Unmitigated

Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBTU/yr)

Land Use	Electricity (kWh/yr)	CO2	CH4	N2O	Natural Gas (kBTU/yr)
Single Family Housing	345,552	453	0.0330	0.0040	1,315,880

5.11.2. Mitigated

Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBTU/yr)

Land Use	Electricity (kWh/yr)	CO2	CH4	N2O	Natural Gas (kBTU/yr)
Single Family Housing	345,552	453	0.0330	0.0040	1,315,880

5.12. Operational Water and Wastewater Consumption

MORV 009 Detailed Report, 3/29/2024

5.12.1. Unmitigated

Land Use	Indoor Water (gal/year)	Outdoor Water (gal/year)
Single Family Housing	1,504,930	8,398,481

5.12.2. Mitigated

Land Use	Indoor Water (gal/year)	Outdoor Water (gal/year)
Single Family Housing	1,504,930	8,398,481

5.13. Operational Waste Generation

5.13.1. Unmitigated

Land Use	Waste (ton/year)	Cogeneration (kWh/year)
Single Family Housing	34.0	

5.13.2. Mitigated

Land Use	Waste (ton/year)	Cogeneration (kWh/year)
Single Family Housing	34.0	-

5.14. Operational Refrigeration and Air Conditioning Equipment

5.14.1. Unmitigated

Land Use Type	Equipment Type	Refrigerant	GWP	Quantity (kg)	Operations Leak Rate	Service Leak Rate	Times Serviced
Single Family Housing	Average room A/C & Other residential A/C and heat pumps	R-410A	2,088	< 0.005	2.50	2.50	10.0
Single Family Housing	Household refrigerators and/or freezers	R-134a	1,430	0.12	0.60	0.00	1.00

MORV 009 Detailed Report, 3/29/2024

5.14.2. Mitigated

Land Use Type	Equipment Type	Refrigerant	GWP	Quantity (kg)	Operations Leak Rate	Service Leak Rate	Times Serviced
Single Family Housing	Average room A/C & Other residential A/C and heat pumps	R-410A	2,088	< 0.005	2.50	2.50	10.0
Single Family Housing	Household refrigerators and/or freezers	R-134a	1,430	0.12	0.60	0.00	1.00

5.15. Operational Off-Road Equipment

5.15.1. Unmitigated

Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor

5.15.2. Mitigated

Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
				- Andrews		<i>n</i>

5.16. Stationary Sources

5.16.1. Emergency Generators and Fire Pumps

Equipment Type	Fuel Type	Number per Day	Hours per Day	Hours per Year	Horsepower	Load Factor

5.16.2. Process Boilers

	Equipment Type	Fuel Type	Number	Boiler Rating (MMBtu/hr)	Daily Heat Input (MMBtu/day)	Annual Heat Input (MMBtu/yr)
--	----------------	-----------	--------	--------------------------	------------------------------	------------------------------

5.17. User Defined

Equipment Type	Fuel Type
	89 / 77

MORV 009 Detailed Report, 3/29/2024

5.18. Vegetation

5.18.1. Land Use Change

5.18.1.1. Unmitigated

Vegetation Land Use Type	Vegetation Soil Type	Initial Acres	Final Acres
5.18.1.2. Mitigated			
Vegetation Land Use Type	Vegetation Soil Type	Initial Acres	Final Acres
5.18.1. Biomass Cover Type			
5.18.1.1. Unmitigated			
Biomass Cover Type	Initial Acres	Final Acres	
5.18.1.2. Mitigated			
Biomass Cover Type	Initial Acres	Final Acres	
5.18.2. Sequestration			
5.18.2.1. Unmitigated			
Тгее Туре	Number	Electricity Saved (kWh/year)	Natural Gas Saved (btu/year)
5.18.2.2. Mitigated			
Тгее Туре	Number	Electricity Saved (kWh/year)	Natural Gas Saved (btu/year)
	70	1 77	

MORV 009 Detailed Report, 3/29/2024

6. Climate Risk Detailed Report

6.1. Climate Risk Summary

Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100.

Climate Hazard	Result for Project Location	Unit
Temperature and Extreme Heat	28.0	annual days of extreme heat
Extreme Precipitation	2.05	annual days with precipitation above 20 mm
Sea Level Rise		meters of inundation depth
Wildfire	7.76	annual hectares burned

Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about 3/4 an inch of rain, which would be light to moderate rainfall if received over a full day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (Radke et al., 2017, CEC-500-2017-008), and consider inundation location and depth for the San Francisco Bay, the Sacramento-San Joaquin River Delta and California coast resulting different increments of sea level rise coupled with extreme storm events. Users may select from four scenarios to view the range in potential inundation depth for the grid cell. The four scenarios are: No rise, 0.5 meter, 1.0 meter, 1.41 meters

Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate, vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

6.2. Initial Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	3	0	0	N/A
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	1	0	0	N/A
Wildfire	1	0	0	N/A
Flooding	N/A	N/A	N/A	N/A
Drought	N/A	N/A	N/A	N/A
Snowpack Reduction	N/A	N/A	N/A	N/A

CITY OF MORENO VALLEY • AIR QUALITY STUDY 37 SINGLE-FAMILY UNIT DEVELOPMENT • TENTATIVE TRACT MAP 38480

MORV 009 Detailed Report, 3/29/2024

		-		
Air Quality Degradation	0	0	0	N/A

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures.

6.3. Adjusted Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	3	1	1	3
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	1	1	1	2
Wildfire	1	1	1	2
Flooding	N/A	N/A	N/A	N/A
Drought	N/A	N/A	N/A	N/A
Snowpack Reduction	N/A	N/A	N/A	N/A
Air Quality Degradation	1	1	1	2

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures.

6.4. Climate Risk Reduction Measures

7. Health and Equity Details

7.1. CalEnviroScreen 4.0 Scores

The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

Indicator	Result for Project Census Tract	
Exposure Indicators	_	
72/77		

MORV 009 Detailed Report, 3/29/2024

AQ-Ozone	98.7
AQ-PM	58.1
AQ-DPM	79.1
Drinking Water	10.2
Lead Risk Housing	20.8
Pesticides	63.8
Toxic Releases	56.5
Traffic	78.4
Effect Indicators	-
CleanUp Sites	7.71
Groundwater	0.00
Haz Waste Facilities/Generators	16.6
Impaired Water Bodies	0.00
Solid Waste	0.00
Sensitive Population	
Asthma	65.6
Cardio-vascular	87.4
Low Birth Weights	75.6
Socioeconomic Factor Indicators	-
Education	72.1
Housing	58.8
Linguistic	32.0
Poverty	62.5
Unemployment	64.5

7.2. Healthy Places Index Scores

The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

MORV 009 Detailed Report, 3/29/2024

Indicator	Result for Project Census Tract
Economic	-
Above Poverty	37.34120364
Employed	55.33170794
Median HI	49.63428718
Education	_
Bachelor's or higher	23.23880405
High school enrollment	23.31579623
Preschool enrollment	10.84306429
Transportation	-
Auto Access	92.6344155
Active commuting	3.297831387
Social	-
2-parent households	22.35339407
Voting	17.07943026
Neighborhood	—
Alcohol availability	97.0101373
Park access	50.19889645
Retail density	55.51135635
Supermarket access	15.32144232
Tree canopy	1.963300398
Housing	-
Homeownership	76.35057103
Housing habitability	47.08071346
Low-inc homeowner severe housing cost burden	9.547029385
Low-inc renter severe housing cost burden	28.39727961
Uncrowded housing	55.19055563

MORV 009 Detailed Report, 3/29/2024

Health Outcomes	-
Insured adults	31.56679071
Arthritis	56.7
Asthma ER Admissions	40.5
High Blood Pressure	29.0
Cancer (excluding skin)	77.2
Asthma	21.6
Coronary Heart Disease	72.1
Chronic Obstructive Pulmonary Disease	47.8
Diagnosed Diabetes	40.6
Life Expectancy at Birth	46.7
Cognitively Disabled	46.5
Physically Disabled	80.2
Heart Attack ER Admissions	11.8
Mental Health Not Good	30.2
Chronic Kidney Disease	45.1
Obesity	19.4
Pedestrian Injuries	19.6
Physical Health Not Good	36.4
Stroke	51.7
Health Risk Behaviors	-
Binge Drinking	54.2
Current Smoker	28.0
No Leisure Time for Physical Activity	29.5
Climate Change Exposures	-
Wildfire Risk	0.0
SLR Inundation Area	0.0

MORV 009 Detailed Report, 3/29/2024

Children	37.8
Elderly	84.9
English Speaking	45.2
Foreign-born	63.9
Outdoor Workers	18.1
Climate Change Adaptive Capacity	-
Impervious Surface Cover	68.2
Traffic Density	64.7
Traffic Access	23.0
Other Indices	-
Hardship	62.2
Other Decision Support	-
2016 Voting	24.4

7.3. Overall Health & Equity Scores

Metric	Result for Project Census Tract
CalEnviroScreen 4.0 Score for Project Location (a)	66.0
Healthy Places Index Score for Project Location (b)	31.0
Project Located in a Designated Disadvantaged Community (Senate Bill 535)	No
Project Located in a Low-Income Community (Assembly Bill 1550)	No
Project Located in a Community Air Protection Program Community (Assembly Bill 617)	No

a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

7.4. Health & Equity Measures

No Health & Equity Measures selected. 7.5. Evaluation Scorecard

MORV 009 Detailed Report, 3/29/2024

Health & Equity Evaluation Scorecard not completed. 7.6. Health & Equity Custom Measures

No Health & Equity Custom Measures created.

8. User Changes to Default Data

Screen	Justification
Land Use	Total lot acreage is 8.89 acres.